\(\frac{1}{12} (2x + 3)^6 + k\)
\(\frac{1}{3} (2x + 3)^{\frac{1}{2}} + k\)
\(\frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
\(\frac{1}{12} (2x + 3)^{\frac{3}{4}} + k\)
Correct answer is C
\(\int (2x + 3)^{\frac{1}{2}} \delta x\)
let u = 2x + 3, \(\frac{\delta y}{\delta x} = 2\)
\(\delta x = \frac{\delta u}{2}\)
Now \(\int (2x + 3)^{\frac{1}{2}} \delta x = \int u^{\frac{1}{2}}.{\frac{\delta x}{2}}\)
\( = \frac{1}{2} \int u^{\frac{1}{2}} \delta u\)
\( = \frac{1}{2} u^{\frac{3}{2}} \times \frac{2}{3} + k\)
\( = \frac{1}{3} u^{\frac{3}{2}} + k\)
\( = \frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
Find the value of t if the standard deviation of 2t, 3t, 4t, 5t, and 6t is √2 ...
The shaded region above is represented by the equation ...
Simplify: \(\log_{10}\) 6 - 3 log\(_{10}\) 3 + \(\frac{2}{3} \log_{10} 27\)...
y varies directly as w2. When y = 8, w = 2. Find y when w = 3...
What is the next number in the series 2, 1, \(\frac{1}{2}\), \(\frac{1}{4}\)......
The area of a parallelogram is 513cm\(^2\) and the height is 19cm. Calculate the base....
Rationalize the expression \(\frac{(7 - \sqrt{3})}{(13 - \sqrt{3})}\)...
The probability of picking a letter T from the word OBSTRUCTION is? ...
Given that sin \(P = \frac{5}{13}\), where p is acute, find the value of cos p - tan p...