Simplify \(\frac{1}{3}\) log8 + \(\frac{1}{3}\) log 64 - 2 log6
log \(\frac{2}{7}\)
log 2
log \(\frac{2}{9}\)
log 9
Correct answer is C
\(\frac{1}{3}\) log8 + \(\frac{1}{3}\) log 64 - 2 log6
= log 2 + log 4 - log 36
= log \(\frac{8}{36}\)
= log \(\frac{2}{9}\)
\(\begin{pmatrix} 1 & 6 \\ 1 & 18 \end{pmatrix}\)
\(\begin{pmatrix} -1 & -6 \\ 1 & 18 \end{pmatrix}\)
\(\begin{pmatrix} 1 & 6 \\ -1 & -18 \end{pmatrix}\)
\(\begin{pmatrix} -1 & -6 \\ -1 & -18 \end{pmatrix}\)
Correct answer is B
3M = 3 \(\begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}\)
= \(\begin{pmatrix} 9 & 6 \\ -3 & 12 \end{pmatrix}\)
2N = 2 \(\begin{pmatrix} 5 & 6 \\ -2 & -3 \end{pmatrix}\)
= \(\begin{pmatrix} 10 & 12 \\ -4 & -6 \end{pmatrix}\)
(3M - 2N) = \(\begin{pmatrix} 9 & 6 \\ -3 & 12 \end{pmatrix}\) - \(\begin{pmatrix} 10 & 12 \\ -4 & -6 \end{pmatrix}\)
For what range of values of x is x\(^2\) - 2x - 3 ≤ 0
{x: -1 ≤ x ≤ 3}
{x: -3 ≤ x ≤ 1}
{x: -3 ≤ x ≤ -1}
{x: 1 ≤ x ≤ 3}
Correct answer is A
Let x\(^2\) - 2x - 3 = 0;
(x+1)(x-3) = 0
The zeros of the function are x = -1 and 3
The solution set is { x: -1 ≤ x ≤ 3}
Simplify ( \(\frac{1}{2 - √3}\) + \(\frac{2}{2 + √3}\) )\(^{-1}\)
\(\frac{-1}{33}\)(6 + √3)
\(\frac{-1}{33}\)(6 - √3)
\(\frac{1}{33}\)(6 + √3)
\(\frac{1}{33}\)(6 - √3)
Correct answer is C
( \(\frac{1}{2 - √3}\) + \(\frac{2}{2 + √3}\) )\(^{-1}\)
= \(\frac{2 + √3 + 2(2 - √3)}{(2 - √3)(2 + √3)}\)
= 2 + √3 + 4 - 2√3
= (6 - √3)\(^{-1}\)
= \(\frac{1}{6 - √3}\)
= \(\frac{6 + √3}{6 - √3 * 6 + √3}\)
= \(\frac{6 + √3}{33}\)
When birds fly, the sky is blue
Birds fly if and only if the sky is blue?
Either the bird is flying or the sky is blue.
When the sky is blue, the bird flies.
Correct answer is B
No explanation has been provided for this answer.