Simplify; \(\frac{\sqrt{5} + 3}{4 - \sqrt{10}}\)
\(\frac{2}{3}\)\(\sqrt{5}\) + \(\frac{5}{6}\sqrt{2}\) + 2
\(\frac{2}{3}\)\(\sqrt{5}\) + \(\frac{5}{6}\sqrt{2}\) + \(\frac{1}{2}\sqrt{10}\)
\(\frac{2}{3}\)\(\sqrt{5}\) + \(\frac{5}{6}\sqrt{2}\) + \(\frac{1}{2}\sqrt{10}\) + 2
\(\frac{2}{3}\)\(\sqrt{5}\) - \(\frac{5}{6}\sqrt{2}\) + \(\frac{1}{2}\sqrt{10}\) + 2
Correct answer is C
\(\frac{(\sqrt{5} + 3)(4 + \sqrt{10})}{(4 - \sqrt{10})(4 + \sqrt{10})}\)
= \(\frac{4\sqrt{5} + \sqrt{50} + 12 + 3\sqrt{10}}{4^2 - (\sqrt{10})^2}\)
= \(\frac{4\sqrt{5} + 5\sqrt{2} + 12 + 3\sqrt{10}}{16 - 10}\)
= \(\frac{4 \sqrt{5}}{6} + \frac{5 \sqrt{2}}{6} + \frac{12}{6} + \frac{3\sqrt{10}}{6}\)
= \(\frac{2}{3}\)\(\sqrt{5}\) + \(\frac{5}{6}\sqrt{2}\) + \(\frac{1}{2}\sqrt{10}\) + 2
{y : y \(\in\) R, y \(\neq\) 0}
{y : y \(\in\) R, y \(\neq\) 1}
{y : y \(\in\) R, y \(\neq\) 5}
{y : y \(\in\) R, y \(\neq\) 7}
Correct answer is C
No explanation has been provided for this answer.
p = 5, q = 3
p = 5, q = -3
p = -5, q = -3
p = -5, q = 3
Correct answer is B
p + q = 2
p - q = 8
\(\overline{\frac{2p}{2} = \frac{10}{2}}\)
p = 5
from p + q = 2
5 + q = 2
q = 2 - 5
= -3
If \(\int^3_0(px^2 + 16)dx\) = 129. Find the value of p
9
8
7
6
Correct answer is A
\(\int^3_0(px^2 + 16)\) = 129
\(\frac{px^2 + 1}{0 + 1} + 16x|^3_0 = 129\)
\(\frac{px^3}{3} + 16x|^3_0 = 129\)
(\(\frac{p(3)^3}{3} + 16(3)\)) - 0 = 129
9p + 48 = 129
9p = 129 - 48
\(\frac{9p}{9} = \frac{81}{9}\)
p = 9
If cos x = -0.7133, find the values of x between 0\(^o\) and 360\(^o\)
44.5\(^o\) , 224.5\(^o\)
123.5\(^o\) , 190.5\(^o\)
135.5\(^o\) , 213.5\(^o\)
135.5\(^o\) , 224.5\(^o\)
Correct answer is D
cos x = -0.7133
x = cos \(^{-1}\)(0.7133)
= 44.496\(^o\)
x = 180 - 44.495\(^o\)
x = 135.5\(^o\)
and x = 180\(^o\) + 44.495\(^o\)
= 224.5\(^o\)