360o
252o
246o
234o
Correct answer is B
Let 0 = angle of the minor sector
angle of the major sector = 360 - \(\theta\)(angle at a point)
2 \(\pi r\) = 54 + 126(i.e circumference of minor and major arc)
2\(\pi r = 180^o\)
r = \(\frac{180}{2\pi}\) = \(\frac{90}{\pi}\)
Lenght of ninor arc
= \(\frac{\theta}{360} \times 2 \pi r\)
54 = \(\frac{\theta}{360} \times 3 \pi r\)
\(\theta = \frac{360 \times 54}{2 \pi r}\)
but r = \(\frac{90}{\pi}\) substituting \(\frac{90}{\pi}\) for r
\(\theta = \frac{360 \times 54 \times \pi}{2 \times \pi \times 90}\)
\(\theta = 2 \times 54 = 108^o\)
angle of the major sector = 360 - 108o
= 252o
14cm
9cm
8cm
7cm
Correct answer is A
Curved surface area = 2\(\pi h\)
704 = 2 x \(\frac{22}{7} \times 8 \times h\)
704 = \(\frac{352}{7}\)h
352h = 704 x 7
h = \(\frac{704 \times 7}{352}\)
= \(\frac{4928}{352}\)
h = 14cm
Solve the inequality: \(\frac{-m}{2} - \frac{5}{4} \geq \frac{5m}{12} - \frac{7}{6}\)
m \(\leq \frac{5}{4}\)
m \(\geq \frac{5}{4}\)
m \(\leq - \frac{1}{11}\)
m \(\geq - \frac{1}{11}\)
Correct answer is C
\(\frac{-m}{2} - \frac{5}{4} \geq \frac{5m}{12} - \frac{7}{6}\)
= \(\frac{-2m - 5}{4} \geq \frac{5m - 14}{12}\)
12(-2m - 5) \(\geq\) 4(5m - 14)
-24m - 60 \(\geq\) 20m - 56
-24m - 20m \(\geq\) -56 + 60
44m \(\geq\) 4
m \(\leq \frac{4}{-44}\)
m \(\leq \frac{-1}{11}\)
12n - 6 = 0
3n - 12 = 0
2n - 35 = 0
5n - 33 = 0
Correct answer is D
12 = \(\frac{n}{3} - 2n = 1\), multiply through by 3
36 + n - 6n = 3
-5n = 3 - 36
-5n = -33
-5n + 33 = 0
5n - 33 = 0
If x + y = 2y - x + 1 = 5, find the value of x
3
2
1
-1
Correct answer is B
x + y = 2y - x + 1 = 5
x + y = 2y - x + 1
x + x + y - 2y = 1
2x - y = 1....(i)
2y - x + 1 = 5
-x + 2y = 5 + 1
-x = 2y = 4
x - 2y = -4 .....(ii)
solve simultaneously (i) x 2x - y = 1
(ii) x x - 2y = -4
2x - y = 1
=2x - 4y = -8
3y = 9
y = \(\frac{9}{3}\)
y = 3
substitute y = 3 into equation (i)
2x - y = 1
2x - 3 = 1
2x = 1 + 3
2x = 4
x = \(\frac{4}{2}\)
= 2