WAEC Past Questions and Answers - Page 1191

5,951.

Find the third term in the expansion of \((a - b)^{6}\) in ascending powers of b.

A.

\(-15a^{4}b^{2}\)

B.

\(15a^{4}b^{2}\)

C.

\(-15a^{3}b^{3}\)

D.

\(15a^{3}b^{3}\)

Correct answer is B

\((a - b)^{6} = ^{6}C_{0}(a)^{6}(-b)^{0} + ^{6}C_{1}(a)^{5}(-b)^{1} + ^{6}C_{2}(a)^{4}(-b)^{2} + ...\)

Third term = \(^{6}C_{2}(a)^{4}(-b)^{2} = \frac{6!}{(6-2)! 2!}(a^4)(b^2)\)

= \(15a^{4}b^{2}\)

5,952.

If \(f(x) = x^{2}\)  and \(g(x) = \sin x\), find g o f.

A.

\(\sin^{2} x\)

B.

\(\sin x^{2}\)

C.

\((\sin x)x^{2}\)

D.

\(x \sin x\)

Correct answer is B

\(f(x) = x^{2}, g(x) = \sin x\)

\(g \circ f = g(x^{2}) = \sin x^{2}\)

5,953.

Express \(\log \frac{1}{8} + \log \frac{1}{2}\) in terms of \(\log 2\)

A.

3 log 2

B.

4 log 2

C.

-3 log 2

D.

-4 log 2

Correct answer is D

\(\log \frac{1}{8} + \log \frac{1}{2} = \log 8^{-1} + \log 2^{-1}\)

= \(\log 2^{-3} + \log 2^{-1}\)

= \(-3 \log 2 - 1 \log 2 = -4 \log 2\)

5,954.

Given that \(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\), solve for n

A.

-6.00

B.

-1.20

C.

0.83

D.

1.20

Correct answer is D

\(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\)

\(\implies a^{\frac{5}{6} + \frac{-1}{n}} = a^{0}\)

Equating bases, we have

\(\frac{5}{6} - \frac{1}{n} = 0\)

\(\frac{5n - 6}{6n} = 0\)

\(5n - 6 = 0 \implies 5n = 6\)

\(n = \frac{6}{5} = 1.20\)

5,955.

Solve: \(\sin \theta = \tan \theta\)

A.

200°

B.

90°

C.

60°

D.

Correct answer is D

\(\sin \theta = \tan \theta \implies \frac{\sin \theta}{1} = \frac{\sin \theta}{\cos \theta}\)

Equating, we have

\(\cos \theta = 1 \implies \theta = \cos^{-1} 1\)

= \(0°\)