WAEC Further Mathematics Past Questions & Answers - Page 125

621.

If \(\begin{vmatrix}  m-2 & m+1 \\ m+4 & m-2 \end{vmatrix} = -27\), find the value of m.

A.

\(3\frac{8}{9}\)

B.

\(3\)

C.

\(2\frac{1}{2}\)

D.

\(2\)

Correct answer is B

\(\begin{vmatrix} m-2 & m+1 \\ m+4 & m-2 \end{vmatrix} = -27\)

\((m^{2} - 4m + 4) - (m^{2} + 5m + 4) = -27\)

\(-9m = -27 \implies m = 3\)

622.

Given that \(-6, -2\frac{1}{2}, ..., 71\) is a linear sequence , calculate the number of terms in the sequence. 

A.

20

B.

21

C.

22

D.

23

Correct answer is D

\(T_{n} = a + (n - 1)d\) (for a linear or arithmetic progression)

Given: \(T_{n} = 71, a = -6, d = -2\frac{1}{2} - (-6) = 3\frac{1}{2}\)

\(\implies 71 = -6 + (n - 1)\times 3\frac{1}{2}\)

\(71 = -6 + 3\frac{1}{2}n - 3\frac{1}{2} = -9\frac{1}{2} + 3\frac{1}{2}n\)

\(71 + 9\frac{1}{2} = 3\frac{1}{2}n  \implies  n = \frac{80\frac{1}{2}}{3\frac{1}{2}}\)

\(= 23\)

623.

The 3rd and 6th terms of a geometric progression (G.P.) are \(\frac{8}{3}\) and \(\frac{64}{81}\) respectively, find the common ratio.

A.

\(\frac{1}{3}\)

B.

\(\frac{2}{3}\)

C.

\(\frac{3}{4}\)

D.

\(\frac{4}{3}\)

Correct answer is B

\(T_{n} = ar^{n-1}\) (for a geometric progression)

\(T_{3} = ar^{3-1} = ar^{2} = \frac{8}{3}\)

\(T_{6} = ar^{6-1} = ar^{5} = \frac{64}{81}\)

Dividing \(T_{6}\) by \(T_{3}\),

\(\frac{ar^{5}}{ar^{2}} = \frac{\frac{64}{81}}{\frac{8}{3}} \implies r^{3} = \frac{8}{27}\)

\(\therefore r = \sqrt[3]{\frac{8}{27}} = \frac{2}{3}\)

624.

Find the fourth term in the expansion of \((3x - y)^{6}\).

A.

\(-540x^{3}y^{3}\)

B.

\(-540x^{4}y^{2}\)

C.

\(-27x^{3}y^{3}\)

D.

\(540x^{4}y^{2}\)

Correct answer is A

Listing out in order, the terms of this expansion have coefficients: \(^{6}C_{6}, ^{6}C_{5}, ^{6}C_{4}, ^{6}C_{3}, ^{6}C_{2}, ^{6}C_{1}, ^{6}C_{0}\)

The 4th term = \(^{6}C_{3}(3x)^{3}(-y)^{3}  = 20 \times 27x^{3} \times -y^{3}\)

= \(-540x^{3}y^{3}\).

625.

Find the coefficient of \(x^{3}\) in the expansion of \([\frac{1}{3}(2 + x)]^{6}\)

A.

\(\frac{135}{729}\)

B.

\(\frac{149}{729}\)

C.

\(\frac{152}{729}\)

D.

\(\frac{160}{729}\)

Correct answer is D

\([\frac{1}{3}(2 + x)]^{6} = (\frac{2}{3} + \frac{x}{3})^{6}\)

The coefficient of \(x^{3}\) is 

\(^{6}C_{3}(\frac{2}{3})^{3}(\frac{1}{3})^{3}x^{3} = (\frac{6!}{3!3!})(\frac{8}{27})(\frac{1}{27})x^{3}\)

= \(\frac{160}{729}\)