Given that x = 2 and y = -\(\frac{1}{4}\), evaluate \(\frac{x^2y - 2xy}{5}\)
zero
\(\frac{1}{5}\)
1
2
Correct answer is A
Given; x = 2; y = \(\frac{-1}{4}\)
= \(\frac{x^2y - 2xy}{5}\)
= \(\frac{2^2(\frac{-1}{4}) - 2(2)(\frac{-1}{4})}{5}\)
= \(\frac{4(\frac{-1}{4}) + 4(\frac{-1}{4})}{5}\)
= \(\frac{1 + 1}{5}\)
= \(\frac{0}{5}\)
= 0
9xy3
3xy6
3xy3
9y3
Correct answer is C
3\(\sqrt{27x^3y^9}\) = 3\(\sqrt{27} \times 3\sqrt{3^3} \times 3\sqrt{y^9}\)
= 3 \(\times x \times y^3\)
= 3xy3
Simplify \(\frac{\frac{1}{x} + \frac{1}{y}}{x + y}\)
\(\frac{1}{x + y}\)
\(\frac{1}{xy}\)
x + y
xy
Correct answer is B
\(\frac{\frac{1}{x} + \frac{1}{y}}{x + y}\) = \(\frac{\frac{y + x}{xy}}{x + y}\)
= \(\frac{x + y}{xy}\)
= \(\frac{x + y}{xy} \times \frac{1}{x + y}\)
= \(\frac{1}{xy}\)
If p-2g + 1 = g + 3p and p - 2 = 0, find g
-2
-1
1
2
Correct answer is B
p - 2g + 1 = g + 3p.........(1)
p - 2 = 0 .........(2)
From (2), p = 2; put p = 2 into (1);
2 - 2g + 1 = g + 3(2)
3 - 2g = g + 6
-2g - g = 6 - 3
-3g = 3
g = \(\frac{3}{-3}\)
g = -1
3.6%
3.5%
3.4%
2.55
Correct answer is A
Cost price, c.p = \(\frac{100}{5}\) x N350 = N7000
Selling price, s.p = \(\frac{100}{5}\) x N290 = N7250
%Gain = \(\frac{S.p - C.p}{C.p}\) x 100%
= \(\frac{7250 - 7000}{7000}\) x 100% = \(\frac{250 \times 100}{7000}\)
= 3.6% (approx.)