WAEC Mathematics Past Questions & Answers - Page 22

106.

In the diagram, line \(\overline{EC}\) is a diameter of the circle ABCDE.

If angle ABC equals 158°, find ∠ADE

A.

112

B.

90

C.

68

D.

22

Correct answer is C

No explanation has been provided for this answer.

107.

Given that sin x = 3/5, 0 ≤ x ≤ 90, evaluate (tanx + 2cosx)

A.

2\(\frac{11}{20}\)

B.

\(\frac{11}{20}\)

C.

2\(\frac{7}{20}\)

D.

\(\frac{1}{20}\)

Correct answer is B

Sin x = \(\frac{opp}{hyp}\)

sinx = \(\frac{3}{5}\)

using Pythagoras' theorem

 hyp\(^2\) = opp\(^2\) + adj\(^2\)

adj\(^2\) = 5\(^2\) - 3\(^2\) = 25 - 9

adj\(^2\) = 16 

adj =  16 

adj = 4.

tanx = \(\frac{opp}{adj}\)

= \(\frac{3}{4}\)

cosx = \(\frac{adj}{hyp}\)

= \(\frac{4}{5}\)

(tanx + 2cosx) = \(\frac{3}{4}\) + 2(\(\frac{4}{5}\))

= \(\frac{15 + 32}{20}\)

= \(\frac{47}{20}\) or 

2 \(\frac{7}{20}\)

108.

A cone has a base radius of 8cm and height 11cm. calculate , correct to 2d.p, the curved surface area

A.

341.98cm\(^2\)

B.

276.57cm\(^2\)

C.

201.14cm\(^2\)

D.

477.71cm\(^2\)

Correct answer is A

Where l\(^2\) = h\(^2\) + r\(^2\)

l\(^2\) = 11\(^2\) + 8\(^2\)

l = √185

l = 13.60cm

The formula of CSA of Cone is πrl

\(\frac{22}{7}\) * 8 * 13.60

= 341.979 or 341.98 (2d.p)

109.

In the diagram, PQRS is a circle. find the value of x.

A.

50°

B.

30°

C.

80°

D.

100°

Correct answer is A

Opp. angles in a cyclic quadrilateral always add up to 180°

∠P + ∠R & ∠Q + ∠S = 180

x + x+y = 180 

2x + y = 180... i

2y - 30 + x = 180 

2y + x = 180 + 30

x + 2y = 210 ... ii

Elimination method:

(2x + y = 180) * 1 --> 2x + y = 180

(x + 2y = 210) * 2 --> 2x + 4y = 420

Subtracting both equations

- 3y = - 240

y = 80°

using eqn i

2x + y = 180

2x + 80 = 180

2x = 100

x = 50°

110.

find the first quartile of 7,8,7,9,11,8,7,9,6 and 8.

A.

8.5

B.

7.0

C.

7.5

D.

8.0

Correct answer is B

Rearrange data in increasing order: 6,7,7,7,8,8,8,9,9 and 11

First quartile (ungrouped data) = \(\frac{n}{4}\)th value

= \(\frac{10}{4}\) 

= 2.5th value

= \(\frac{7 + 7}{2}\)

= 7.0