WAEC Past Questions and Answers - Page 3925

19,621.

In the diagram, POS and ROT are straight lines, OPQR is a parallelogram. |OS| = |OT| and ∠OST = 50°. Calculate ∠OPQ.

A.

160o

B.

140o

C.

120o

D.

100o

Correct answer is D

< T = < S = 50° (OS = OT)

< SOT = 180° - 2(50°) = 80°

< ROP = 80° (vertically opposite angle)

\(\therefore\) < OPQ = 180° - 80° = 100° (adjacent angles)

19,622.

If the interior angles of hexagon are 107°, 2x°, 150°, 95°, (2x-15)° and 123°, find x.

A.

\(57\frac{1}{2}^{\circ}\)

B.

\(65^{\circ}\)

C.

\(106^{\circ}\)

D.

\(120^{\circ}\)

Correct answer is B

Sum of interior angle in a hexagon = (6 - 2) x 180°

= 720°

\(\therefore\) 107° + 2x° + 150° + 95° + (2x - 15)° + 123° = 720°

460 + 4x = 720 \(\implies\) 4x = 720 - 460

4x = 260° \(\implies\) x = 65°

19,623.
19,624.

In the diagram, PQRS is a circle center O. PQR is a diameter and ∠PRQ = 40°. Calculate ∠QSR

A.

30o

B.

40o

C.

45o

D.

50o

Correct answer is D

< Q = < R (OQ = OR = radii)

< QOR = 180° - 2(40°) = 100°

< QSR = < RPQ = \(\frac{1}{2}\) < QOR

= \(\frac{100}{2} = 50°\)