3.5cm
7cm
14cm
28cm
32cm
Correct answer is C
Curved surface area of a cylindrical tin = \(2\pi rh\)
\(\therefore 2\pi rh = 704cm^2\)
\(2 \times \frac{22}{7} \times 8 \times h = 704\)
\(h = \frac{704 \times 7}{2 \times 22 \times 8}\)
\(h = 14cm\)
16/3cm
15/3cm
16/5cm
8/3cm
16/10cm
Correct answer is A
L = θ/360 x 2πR = 240/360 x 2 x 22/7 x 8/1 ... (1)
This must be equal to the circumference of the circle which is 2πr = 44R/7 .... (2)
equate (1) and (2)
r = 16/3 = 51/3
Solve the equation \(\frac{m}{3} + \frac{1}{2} = \frac{3}{4} + \frac{m}{4}\)
-3
-2
2
3
4
Correct answer is D
\(\frac{m}{3} + \frac{1}{2} = \frac{3}{4} + \frac{m}{4}\)
\(\frac{m}{3} - \frac{m}{4} = \frac{3}{4} - \frac{1}{2}\)
\(\frac{m}{12} = \frac{1}{4}\)
\(4m = 12 \implies m = 3\)
What must be added to the expression x\(^2\) - 18x to make it a perfect square?
3
9
36
72
81
Correct answer is E
x\(^2\) - 18x to be a perfect square.
\((\frac{b}{2})^2\) is added to ax\(^2\) + bx + c in order to make it a perfect square.
\(x^2 - 18x + (\frac{-18}{2})^2\)
= \(x^2 - 18x + 81\)
Write as a single fraction \(\frac{1}{1 - x} + \frac{2}{1 + x}\)
\(\frac{x + 3}{1 - x^2}\)
\(\frac{3 - x}{(1 - x)^2}\)
\(\frac{3 - x}{1 + x^2}\)
\(\frac{3 - x}{(1 + x)^2}\)
\(\frac{3 - x}{1 - x^2}\)
Correct answer is E
\(\frac{1}{1 - x} + \frac{2}{1 + x}\)
= \(\frac{(1 + x) + 2(1 - x)}{(1 - x)(1 + x)}\)
= \(\frac{1 + x + 2 - 2x}{1 - x^2}\)
= \(\frac{3 - x}{1 - x^2}\)