WAEC Further Mathematics Past Questions & Answers - Page 60

296.

Given that \(\overrightarrow{AB} = 5i + 3j\) and \(\overrightarrow{AC} = 2i + 5j\), find \(\overrightarrow{BC}\). 

A.

-7i - 8j

B.

-3i + 2j

C.

3i - 2j

D.

3i + 8j

Correct answer is B

\(\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}\)

\(\overrightarrow{BA} = - \overrightarrow{AB} = -(5i + 3j)\)

= \(-5i - 3j\)

\(\overrightarrow{BC} = (-5i - 3j) + (2i + 5j)\)

= \(-3i + 2j\)

297.

If events A and B are independent and \(P(A) = \frac{7}{12}\) and \(P(A \cap B) = \frac{1}{4}\), find P(B).

A.

\(\frac{3}{7}\)

B.

\(\frac{4}{7}\)

C.

\(\frac{5}{7}\)

D.

\(\frac{6}{7}\)

Correct answer is A

\(P(A) = \frac{7}{12}\)

\(P(A \cap B) = \frac{1}{4} = P(A) \times P(B)\) (Independent events)

\(\frac{1}{4} ÷ \frac{7}{12} = \frac{1}{4} \times \frac{12}{7} \)

= \(\frac{3}{7}\)

298.

If \(\begin{vmatrix} 4 & x \\ 5 & 3 \end{vmatrix} = 32\), find the value of x.

A.

4

B.

2

C.

-2

D.

-4

Correct answer is D

\(\begin{vmatrix} 4 & x \\ 5 & 3 \end{vmatrix} = 12 - 5x = 32\)

\(5x = 12 - 32 = -20\)

\(x = -4\)

299.

Express \(\frac{1}{1 - \sin 45°}\) in surd form. 

A.

\(2 + \sqrt{2}\)

B.

\(2 + \sqrt{3}\)

C.

\(2 - \sqrt{2}\)

D.

\(1 + 2\sqrt{2}\)

Correct answer is A

\(\sin 45 = \frac{\sqrt{2}}{2}\)

\(\frac{1}{1 - \sin 45} = \frac{1}{1 - \frac{\sqrt{2}}{2}}\)

\(\frac{2}{2 - \sqrt{2}} = \frac{4 + 2\sqrt{2}}{4 - 2}\)

= \(2 + \sqrt{2}\)

300.

Given that \(f '(x) = 3x^{2} - 6x + 1\) and f(3) = 5, find f(x).

A.

\(f(x) = x^{3} - 3x^{2} + x + 20\)

B.

\(f(x) = x^{3} - 3x^{2} + x + 31\)

C.

\(f(x) = x^{3} - 3x^{2} + x + 2\)

D.

\(f(x) = x^{3} - 3x^{2} + x - 13\)

Correct answer is C

\(f ' (x) = 3x^{2} - 6x + 1\)

\(f(x) = \int (3x^{2} - 6x + 1) \mathrm {d} x\)

= \(x^{3} - 3x^{2} + x + c\)

\(f(3) = 5 = 3^{3} - 3(3^{2}) + 3 + c\)

\(27 - 27 + 3 + c = 5 \implies 3 + c = 5\)

\(c = 2\)

\(f(x) = x^{3} - 3x^{2} + x + 2\)