WAEC Further Mathematics Past Questions & Answers - Page 71

351.

The roots of the quadratic equation \(2x^{2} - 5x + m = 0\) are \(\alpha\) and \(\beta\), where m is a constant. Find \(\alpha^{2} + \beta^{2}\) in terms of m

A.

\(\frac{25}{4} - m\)

B.

\(\frac{25}{4} - 2m\)

C.

\(\frac{25}{4} + m\)

D.

\(\frac{25}{4} + 2m\)

Correct answer is A

\(2x^{2} - 5x + m = 0\)

\(a = 2, b = -5, c = m\)

\(\alpha + \beta = \frac{-b}{a} = \frac{5}{2}\)

\(\alpha \beta = \frac{c}{a} = \frac{m}{2}\)

\(\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta\)

= \((\frac{5}{2})^{2} - 2(\frac{m}{2}) \)

= \(\frac{25}{4} - m\)

352.

Express \(\frac{2}{3 - \sqrt{7}} \text{ in the form} a + \sqrt{b}\), where a and b are integers.

A.

\(6 + \sqrt{7}\)

B.

\(3 + \sqrt{7}\)

C.

\(3 - \sqrt{7}\)

D.

\(6 - \sqrt{7}\)

Correct answer is B

Rationalizing \(\frac{2}{3 - \sqrt{7}}\) by multiplying through with \(3 + \sqrt{7}\),

\(\frac{2}{3 - \sqrt{7}} \frac{(3 + \sqrt{7})}{(3 + \sqrt{7})} = \frac{6 + 2\sqrt{7}}{9 - 7}\)

= \(\frac{6 + 2\sqrt{7}}{2} = 3 + \sqrt{7}\)

353.

Which of the following binary operations is not commutative?

A.

\(a * b = \frac{1}{a} + \frac{1}{b}\)

B.

\(a * b = a + b - ab\)

C.

\(a * b = 2a + 2b + ab\)

D.

\(a * b = a - b + ab\)

Correct answer is D

All other options given are commutative i.e. \(a * b = b * a\), except option D.

\(a * b = a - b + ab\)

\(b * a = b - a + ba\)

\(a - b = -(b - a) \neq b - a\)

354.

Find the coefficient of \(x^{4}\) in the binomial expansion of \((2 + x)^{6}\)

A.

120

B.

80

C.

60

D.

15

Correct answer is C

\((2 + x)^{6} \)

\(x^{4} = ^{6}C_{2}(2^{2})(x^{4}) = 15 \times 4 = 60\)

355.

Given \(\sin \theta =  \frac{\sqrt{3}}{2}, 0° \leq \theta \leq 90°\), find \(\tan 2\theta\) in surd form

A.

\(- \sqrt{3}\)

B.

\(-\frac{\sqrt{3}}{2}\)

C.

\(\frac{\sqrt{3}}{2}\)

D.

\(\sqrt{3}\)

Correct answer is A

\(\sin \theta = \frac{\sqrt{3}}{2} \implies opp = \sqrt{3}; hyp = 2\)

\(adj^{2} = 2^{2} - (\sqrt{3})^{2} = 1 \implies adj = 1\)

\(\cos \theta = \frac{1}{2}\)

\(\sin 2\theta = \sin (180 - \theta) = \sin \theta = \frac{\sqrt{3}}{2}\)

\(\cos 2\theta = \cos (180 - \theta) = -\cos \theta = -\frac{1}{2}\)

\(\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\)

= \(- \sqrt{3}\)