- \sqrt{3}
-\frac{\sqrt{3}}{2}
\frac{\sqrt{3}}{2}
\sqrt{3}
Correct answer is A
\sin \theta = \frac{\sqrt{3}}{2} \implies opp = \sqrt{3}; hyp = 2
adj^{2} = 2^{2} - (\sqrt{3})^{2} = 1 \implies adj = 1
\cos \theta = \frac{1}{2}
\sin 2\theta = \sin (180 - \theta) = \sin \theta = \frac{\sqrt{3}}{2}
\cos 2\theta = \cos (180 - \theta) = -\cos \theta = -\frac{1}{2}
\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}
= - \sqrt{3}
Simplify: ^{n}C_{r} ÷ ^{n}C_{r-1}...
In how many ways can four Mathematicians be selected from six ? ...
If y = (5 - x)^{-3}, and \frac{dy}{dx}...
If \frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}, where m is a constant. Find m....
The derivative of a function f with respect to x is given by \(f'(x) = 3x^{2} - \frac{4}{x^{5}}\...
Given that P = {x : 2 ≤ x ≤ 8} and Q = {x : 4 < x ≤ 12} are subsets of the universal set...
The velocity v ms^{-1} of a particle moving in a straight line is given by \(v = 3t^{2} - 2t + 1...
Find the equation of a circle with centre (-3, -8) and radius 4\sqrt{6}...
Find the derivative of \sqrt[3]{(3x^{3} + 1} with respect to x....
If f(x) = \frac{1}{2 - x}, x \neq 2, find f^{-1}(-\frac{1}{2})....