WAEC Further Mathematics Past Questions & Answers - Page 77

381.

Find the equation of the tangent to the curve \(y = 4x^{2} - 12x + 7\) at point (2, -1).

A.

y + 4x - 9 = 0

B.

y - 4x - 9 = 0

C.

y - 4x + 9 = 0

D.

y + 4x + 9 = 0

Correct answer is C

\(y = 4x^{2} - 12x + 7\)

\(\frac{\mathrm d y}{\mathrm d x} = 8x - 12\)

At x = 2, y = 8(2) - 12 = 4

Equation of the tangent to the curve: \(y - (-1) = 4(x - 2)\)

\(y + 1 = 4x - 8 \implies y - 4x + 1 + 8 = y - 4x + 9 = 0\)

382.

Find the axis of symmetry of the curve \(y = x^{2} - 4x - 12\).

A.

x = -2

B.

y = -2

C.

x = 2

D.

y = 2

Correct answer is C

The vertical line \(x = \frac{-b}{2a}\) is the axis of symmetry of the curve.

\(y = x^{2} - 4x - 12\)

\(\text{Axis of symmetry} = x = \frac{-(-4)}{2(1)} = \frac{4}{2} = 2\)

383.

The third of geometric progression (G.P) is 10 and the sixth term is 80. Find the common ratio.

A.

2

B.

3

C.

4

D.

8

Correct answer is A

\(T_{n} = ar^{n - 1}\) ( Geometric Progression)

\(T_{3} = ar^{3 - 1} = ar^{2} = 10 .... (1)\)

\(T_{6} = ar^{6 - 1} = ar^{5} = 80 .....(2)\)

Divide (2) by (1)

\(r^{5 - 2} = r^{3} = 8 \)

\(r = \sqrt[3]{8} = 2\)

384.

Given that \(P = {x : \text{x is a factor of 6}}\) is the domain of \(g(x) = x^{2} + 3x - 5\), find the range of x.

A.

{-1, 5, 13}

B.

{5, 13, 49}

C.

{1, 2, 3, 6}

D.

{-1, 5, 13, 49}

Correct answer is D

\(P = {x : \text{x is a factor of 6}} \implies P = {1, 2, 3, 6}\)

\(g(x) = x^{2} + 3x - 5\)

\(g(1) = 1^{2} + 3(1) - 5 = 1 + 3 - 5 = -1\)

\(g(2) = 2^{2} + 3(2) - 5 = 4 + 6 - 5 = 5\)

\(g(3) = 3^{2} + 3(3) - 5 = 9 + 9 - 5 = 13\)

\(g(6) = 6^{2} + 3(6) - 5 = 36 + 18 - 5 = 49\)

\(\therefore Range(g(x)) = {-1, 5, 13, 49}\)

385.

If \(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = -2\), find the value of x.

A.

-8

B.

4

C.

-4

D.

8

Correct answer is A

\(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = 3(x - 2) - 2x = -2\)

\(3x - 6 - 2x = -2 \implies x - 6 = -2\)

\(x = -2 + 6 = 4\)