WAEC Further Mathematics Past Questions & Answers - Page 85

421.

The fourth term of a geometric sequence is 2 and the sixth term is 8. Find the common ratio.

A.

±1

B.

±2

C.

±3

D.

±4

Correct answer is B

\(T_{n} = ar^{n - 1}\) (Exponential sequence)

\(T_{4} = ar^{3} = 2 .... (1)\)

\(T_{6} = ar^{5} = 8 ......(2)\)

Divide (2) by (1),

\(\frac{ar^{5}}{ar^{3}} = \frac{8}{2} \)

\(r^{2} = 4\)

\(r = \pm 2\)

422.

If \(\begin{pmatrix} 3 & 2 \\ 7 & x \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 12 \\ 29 \end{pmatrix} \), find x.

A.

5

B.

6

C.

7

D.

8

Correct answer is A

\(\begin{pmatrix} 3 & 2 \\ 7 & x \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 12 \\ 29 \end{pmatrix}\)

\(\begin{pmatrix} 3 \times 2 + 2 \times 3 \\ 7 \times 2 + x \times 3 \end{pmatrix} = \begin{pmatrix} 12 \\ 29 \end{pmatrix}\)

\(\implies 14 + 3x = 29 \)

\(3x = 29 - 14 = 15\)

\(x = 5\)

423.

The inverse of a function is given by \(f^{-1} : x \to \frac{x + 1}{4}\).

A.

\(f : x \to 4x - 1\)

B.

\(f : x \to 4x + 1\)

C.

\(f : x \to \frac{4x - 1}{4}\)

D.

\(f : x \to \frac{x - 1}{2}\)

Correct answer is A

The inverse of the inverse of a function gives the function 

i.e \(f^{-1}(f^{-1}(x)) = f(x)\)

\(f^{-1}(x) = \frac{x + 1}{4}\)

Take y = x, so

\(f^{-1}(y) = \frac{y + 1}{4}\)

Let \(x = f^{-1}(y)\),

\(x = \frac{y + 1}{4} \implies 4x = y + 1\)

\(y = f(x) = 4x - 1\)

424.

Solve \(9^{2x + 1} = 81^{3x + 2}\)

A.

\(\frac{-3}{4}\)

B.

\(\frac{-2}{3}\)

C.

\(\frac{4}{5}\)

D.

\(\frac{3}{2}\)

Correct answer is A

\(9^{2x + 1} = 81^{3x + 2}\)

\(9^{2x + 1} = (9^{2})^{3x + 2}\)

\(9^{2x + 1} = 9^{6x + 4}\)

Equating powers, 

\(2x + 1 = 6x + 4 \implies -3 = 4x\)

\(\therefore x = \frac{-3}{4}\)

425.

A line is perpendicular to \(3x - y + 11 = 0\) and passes through the point (1, -5). Find its equation.

A.

3y - x -14 = 0

B.

3x + y + 1 = 0

C.

3y + x + 1 = 0

D.

3y + x + 14 = 0

Correct answer is D

\(3x - y + 11 = 0 \implies y = 3x + 11\)

\(Gradient = 3\)

Gradient of perpendicular line = \(\frac{-1}{3}\)

\(\therefore \frac{y - (-5)}{x - 1} = \frac{-1}{3}\)

\(3(y + 5) = 1 - x\)

\(3y + x + 15 - 1 = 3y + x + 14 = 0\)