Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

511.

Given that \(f(x) = 2x^{3} - 3x^{2} - 11x + 6\) and \(f(3) = 0\), factorize f(x)

A.

(x - 3)(x - 2)(2x + 2)

B.

(x + 3)(x - 2)(x - 1)

C.

(x - 3)(x + 2)(2x -1)

D.

(x + 3)(x - 2)(2x - 1)

Correct answer is C

Since f(3) = 0, then (x - 3) is a factor of f(x).

Dividing f(x) by (x - 3), we get \(2x^{2} + 3x - 2\).

\(2x^{2} + 3x - 2 = 2x^{2} - x + 4x - 2\)

\(x(2x - 1) + 2(2x - 1) = (x + 2)(2x - 1)\)

Therefore, \(f(x) = (x - 3)(x + 2)(2x -1)\)

512.

If \(\alpha\) and \(\beta\) are the roots of the equation \(2x^{2} - 6x + 5 = 0\), evaluate \(\frac{\beta}{\alpha} + \frac{\alpha}{\beta}\)

A.

\(\frac{24}{5}\)

B.

\(\frac{8}{5}\)

C.

\(\frac{5}{8}\)

D.

\(\frac{5}{24}\)

Correct answer is B

\(2x^{2} - 6x + 5 = 0 \implies a = 2, b = -6, c = 5\)

\(\alpha + \beta = \frac{-b}{a} = \frac{-(-6)}{2} = 3\)

\(\alpha\beta = \frac{c}{a} = \frac{5}{2} \)

\(\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\beta^{2} + \alpha^{2}}{\alpha\beta}\)

\(\frac{(\alpha + \beta)^{2} - 2\alpha\beta}{\alpha\beta} = \frac{3^{2} - 2(\frac{5}{2})}{\frac{5}{2}}\)

= \(\frac{4}{\frac{5}{2}} = \frac{8}{5}\)

513.

If \(\sqrt{x} + \sqrt{x + 1} = \sqrt{2x + 1}\), find the possible values of x.

A.

1 and -1

B.

-1 and 2

C.

1 and 2

D.

0 and -1

Correct answer is D

\(\sqrt{x} + \sqrt{x + 1} = \sqrt{2x + 1}\)

Squaring both sides, we have

\((\sqrt{x} + \sqrt{x + 1})^{2} = (\sqrt{2x + 1})^{2}\)

\(x + 2\sqrt{x(x + 1)} + x + 1 = 2x + 1\)

\(2x + 1 + 2\sqrt{x(x+1)} - (2x + 1) = 0\)

\((2\sqrt{x(x + 1)})^{2}= 0^{2}  \implies 4(x(x + 1)) = 0\)

\(\therefore x(x + 1) = 0\)

\(x = \text{0 or -1}\)

514.

Find the third term in the expansion of \((a - b)^{6}\) in ascending powers of b.

A.

\(-15a^{4}b^{2}\)

B.

\(15a^{4}b^{2}\)

C.

\(-15a^{3}b^{3}\)

D.

\(15a^{3}b^{3}\)

Correct answer is B

\((a - b)^{6} = ^{6}C_{0}(a)^{6}(-b)^{0} + ^{6}C_{1}(a)^{5}(-b)^{1} + ^{6}C_{2}(a)^{4}(-b)^{2} + ...\)

Third term = \(^{6}C_{2}(a)^{4}(-b)^{2} = \frac{6!}{(6-2)! 2!}(a^4)(b^2)\)

= \(15a^{4}b^{2}\)

515.

If \(f(x) = x^{2}\)  and \(g(x) = \sin x\), find g o f.

A.

\(\sin^{2} x\)

B.

\(\sin x^{2}\)

C.

\((\sin x)x^{2}\)

D.

\(x \sin x\)

Correct answer is B

\(f(x) = x^{2}, g(x) = \sin x\)

\(g \circ f = g(x^{2}) = \sin x^{2}\)