How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Simplify \(\frac{4}{2x} - \frac{2x + x}{x}\)
-1
-2x
2x
\(\frac{2 - x}{2x}\)
Correct answer is A
\(\frac{4}{2x} - \frac{2 + x}{x} = \frac{4 - 2(2 + x)}{2x}\)
= \(\frac{4 - 4 - 2x}{2x} = \frac{-2x}{2x}\)
= 1
Expand the expression(3a - xy)(3a + xy)
9a2 - x2y2
9a2 + x2y2
9a2 - xy
9a2 + x2y
Correct answer is A
(3a - xy)(3a + xy); (3a)2 - (xy)2
difference of two sqs; 9a2 - x2y2
Find the smallest value of k such that 2\(^2\) x 3\(^3\) x 5 x k is a perfect square.
3
5
15
30
Correct answer is C
2\(^2\) x 3\(^3\) x 5\(^1\) x k;
2\(^2\) x 3\(^2\) x 3 x 5 x k
2\(^2\) x 3\(^2\) x 15 x k
smallest value for k
2\(^2\) x 3\(^2\) x 15 = 2\(^2\) x 3\(^2\) x 15\(^2\)
k = 15
For what range of values of x is 4x - 3(2x - 1) > 1?
x > -1
x > 1
x < 1
x < -1
Correct answer is C
4x - 3(2x - 1) > 1
4x - 6x + 3 > 1
-2x > 1 - 3; 2x > -2
x < \(\frac{-2}{-2}\)
= x < 1
make w the subject of the relation \(\frac{a + bc}{wd + f}\) = g
\(\frac{a + bc - fg}{dg}\)
\(\frac{a - bc + fg}{dg}\)
\(\frac{a + bc - f}{dg}\)
\(\frac{a + bc - dg}{dg}\)
Correct answer is A
\(\frac{a + bc}{wd + f}\) = g(cross multiply)
a = bc + wdg + fg
wdg = a + bc - fg
w = \(\frac{a + bc - fg}{dg}\)