How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
15k
20k
50k
40k
45k
Correct answer is C
C = a + k
\(\frac{1}{N}\) = c
= \(\frac{aN + k}{N}\)
CN = aN + K
30(100) = a(100) + k
3000 = 100a + k.......(i)
60(40) = a(40) + k
2400 = 40a + k.......(ii)
eqn (i) - eqn (ii)
600 = 60a
a = 10
subt. for a in eqn (i) 3000 = 100(10) + K
3000 - 1000 = k
k = 2000
CN = 10N + 2000. when N = 50,
50C = 10(50) + 2000
50C = 500 + 2000
C = \(\frac{2500}{50}\)
= 50k
\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\) is equal to
1
(\(\sqrt{2} + 4\sqrt{2}\))
(6\(\sqrt{2}\)
8
Correct answer is A
\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\)
\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2}) = \sqrt{3} - \sqrt[4]{6} + \sqrt[4]{6} - \sqrt{2}\)
= \(\sqrt{3} - \sqrt{2}\)
\((\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 + \sqrt{6} - \sqrt{6} - 2\)
= \(3 - 2 = 1\)
1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + .........
1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{2.4.3}\) + ..
1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2}\) + \(\frac{x^3}{1.2.3}\) + \(\frac{x^4}{1.23.4}\) + .........
1 - x + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + .........
1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{1.2.6}\) + .........
Correct answer is C
\(e^{x} = 1 + x + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + ...\)
\(\frac{1}{e^{\frac{1}{2}}} = e^{-\frac{1}{2}}\)
\(e^{-\frac{1}{2}} = 1 - \frac{x}{2} + \frac{x^{2}}{1.2^{3}} - \frac{x^{3}}{1.2^{4}.3} + ... \)
Find the values of p for which the equation x2 - (p - 2)x + 2p + 1 = 0
(21, 0)
(0, 12)
(1, 2)
(3, 4)
(4, 5)
Correct answer is B
Equal roots implies b2 - 4ac = 0
a = 1b = - (p - 2), c = 2p + 1
[-(p - 2)]2 - 4 x 1 x (2p + 1) = 0
p2 - 4p + 4 - 4(2p + 1) = 0
p2 - 4p = 4 - 8p - 4 = 0
p2 - 12p = 0
p(p - 12) = 0
p = 0 or 12
1M = 1\(\frac{15}{57}\)N
1M = 38\(\frac{1}{4}\)N
1M = 1\(\frac{18}{57}\)N
1M = 384\(\frac{3}{4}\)N
Correct answer is C
N = 22\(\frac{1}{2}\)%, M = 17\(\frac{1}{10}\)%
M = \(\frac{171}{10}\)%, N = \(\frac{45}{2}\)
\(\frac{45}{2}\) x \(\frac{10}{171}\)
= \(\frac{225}{171}\)
= 1 \(\frac{54}{171}\)
= 1 \(\frac{18}{57}\)