Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

2,071.

Simplify \(\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{2}}}{3^{-\frac{1}{6}} \times 3^{\frac{-2}{3}}}\)

A.

\(\frac{1}{3}\)

B.

1

C.

3

D.

9

Correct answer is B

\(\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{2}}}{3^{-\frac{1}{6}} \times 3^{-\frac{2}{3}}}\) = \(\frac{(3^2)^{\frac{1}{2}} \times (3^3)^{-\frac{1}{3}}}{3^{-\frac{1}{6}} \times 3^{-\frac{2}{3}}}\)

= \(\frac{3^{\frac{2}{3}} \times 3^{-\frac{3}{2}}}{3^{-\frac{1}{6}} \times 3^{-\frac{2}{3}}}\)

= \(\frac{3^{-\frac{5}{6}}}{3^{-\frac{5}{6}}}\)

= 1

2,072.

Find n if log\(_{2}\) 4 + log\(_{2}\) 7 - log\(_{2}\) n = 1

A.

10

B.

14

C.

27

D.

28

Correct answer is B

log\(_2\) 4 + log\(_2\) 7 - log\(_2\) n = 1

= log\(_2\) (4 x 7) - log\(_2\) n = 1

\(\therefore\) log\(_2\) 28 - log\(_2\) n = 1

= \(\frac{28}{n} = 2^1\)

\(\frac{28}{n}\) = 2

2n = 28

∴ n = 14

2,073.

Simplify \((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)

A.

\(\frac{\sqrt{3}}{\sqrt{5}}\)

B.

\(\frac{2 \sqrt{3}}{7}\)

C.

-2

D.

-1

Correct answer is D

\((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)

\(\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}\)

\(\frac{(\sqrt{5} - \sqrt{3}) - (\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}\)

= \(\frac{\sqrt{5} - \sqrt{3} - \sqrt{5} - \sqrt{3}}{5 - \sqrt{15} + \sqrt{15} - 3}\)

= \(\frac{-2\sqrt{3}}{2}\)

= \(- \sqrt{3}\)

\(\therefore (\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}} = - \sqrt{3} \times \frac{1}{\sqrt{3}}\)

= \(-1\)

2,074.

In 1984, Ike was 24 yrs old and his father was 45 yrs old. In what year was Ike exactly half his father's age?

A.

1981

B.

1979

C.

1982

D.

1978

Correct answer is A

Let the no. of years be y

24 - y = \(\frac{1}{2}\)(45 - y)

45 - y = 2(24 - y)

45 - y = 48 - 2y

2y - y = 48 - 45

∴ y = 3

The exact year = 1984

1984 - 3 = 1981

2,075.

The ages of Tosan and Isa differ by 6 and the product of their ages is 187. Write their ages in the form (x, y), where x > y.

A.

(12, 6)

B.

(23, 17)

C.

(17, 11)

D.

(18, 12)

Correct answer is C

x - y = 6.......(i)

xy = 187.......(ii)

From equation (i), x(6 + y)

sub. for x in equation (ii) = y(6 + y)

= 187

y2 + 6y = 187

y2 + 6y - 187 = 0

(y + 17)(y - 11) = 0

y = -17 or y = 11

y cannot be negative, y = 11

Sub. for y in equation(i) = x - 11

= 16

x = 6 + 11

= 17

∴(x, y) = (17, 11)