How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
15o
30o
45o
60o
Correct answer is C
30 + 45 + 60 + 90 + 2x + x = 360°
225 + 3x = 360
3x = 360 - 225
3x = 135
x = 45°
Evaluate \(\int^{\frac{\pi}{2}} _{\frac{-\pi}{2}} cos x dx\)
zero
1
2
3
Correct answer is C
\(\int^{\frac{\pi}{2}} _{\frac{-\pi}{2}} cos x dx = [sinx]^{\frac{\pi}{2}} _{\frac{-\pi}{2}}\\
=sin\frac{\pi}{2} - sin\frac{-\pi}{2}\)
= sin90 – sin-90
= sin90 – sin270
= 1 – (-1)
= 1+1
= 2
Evaluate \(\int_1 ^2(6x^2-2x)dx\)
16
13
12
11
Correct answer is D
\(\int_1 ^2(6x^2-2x)dx=[\frac{6x^3}{3}-\frac{2x^2}{2}]_1 ^2\\
= [2x^3 - x^2]_1^2\)
= [2(2)3 - (2)2] – [2(1)3 - (1)2]
= [16-4] – [2-1]
= 12 – 1
= 11
Find the minimum value of the function y = x(1+x)
-1/4
-1/2
1/4
1/2
Correct answer is A
y = x(1+x)
= x + x2
dy/dx = 1 + 2x
As dy/dy → 0
1 + 2x = 0
2x = -1
X = -1/2
Y = x(1+x)
= -1/2(1 - 1/2) at x = -1/2
= -1/2(1/2)
= -1/4
x cos x
x sin x
-x cos x
-x sin x
Correct answer is B
sin x - x cos x
dy/dx = cos x - [1.cos x + x -sin x]
= co x - [cos x - x sin x]
= cos x - cos x + x sin x
= x sin x