Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

3,746.

Calculate the logarithm to base 9 of 3-4 * 92 * (81)-1

A.

2

B.

zero

C.

-2

D.

-4

Correct answer is C

\(3^{-4}\times 9^2 \times 81^{-1}\\
=log_9 (3^{-4}\times 9^2 \times 81^{-1})\\
=log_9 \left(\frac{1}{3^4}\times 9^2 \times \frac{1}{81}\right)\\
=log_9 \left(\frac{1}{81}\times \frac{81}{1}\times \frac{1}{81}\right)\\
=log_9 \frac{1}{81}\\
=log_9 \frac{1}{9^2}\\
=log_9 9^{-2}\\
=-2log_9 9\\
-2 \times 1\\
=-2\)

3,747.

If m:n = 13:11, find m\(^2\) - n\(^2\) : (m + n)\(^2\)

A.

1:11

B.

1:13

C.

1:10

D.

1:12

Correct answer is D

m : n = 13 : 11
m\(^2\) - n\(^2\) : (m + n)2
= 13\(^2\) - 11\(^2\) : (13 + 11)\(^2\)
= 169 - 121 : 24\(^2\)
= 48 : 576
= 1 : 12

 

3,748.

simplify \(\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{3}+\frac{\frac{2}{5}}{\frac{4}{5}}}\)

A.

\(\frac{11}{12}\)

B.

\(\frac{5}{6}\)

C.

\(\frac{1}{5}\)

D.

\(\frac{2}{15}\)

Correct answer is D

\(\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{3}+\frac{\frac{2}{5}}{\frac{4}{5}}}\\
=\frac{\frac{7-6}{9}}{\frac{1}{3}+\frac{\frac{2}{5}}{\frac{4}{5}}}\\
=\frac{\frac{1}{9}}{\frac{1}{3}+\left(\frac{2}{5}\times \frac{5}{4}\right)}\\
=\frac{\frac{1}{9}}{\frac{1}{3}+\frac{1}{2}}\
=\frac{\frac{1}{9}}{\frac{2+3}{6}}\\
=\frac{\frac{1}{9}}{\frac{5}{6}}\\
=\frac{1}{9}\times\frac{6}{5}\\
=\frac{2}{15}\)

3,749.

Evaluate \(\int_{-4}^0(1 - 2x)dx\)

A.

-16

B.

-20

C.

20

D.

10

Correct answer is C

\(\int_{-4}^0(1 - 2x)dx=[x-x^2]_{-4}^0\\= (0 - 0 + C) - (-4(-4)^2 + C)\\
= C - (-4-16+C)\\
= C-(-20+C)\\
= C+20-C\\
= 20\)

3,750.

Differentiate (cos θ - sin θ)\(^2\)

A.

-2 cos 2θ

B.

-2 sin2θ

C.

1 - 2 cos 2θ

D.

1 - 2 sin 2θ

Correct answer is A

y = (cosθ - sinθ)
dy/dx = 2(cosθ - sinθ)(-sinθ - cosθ)
dy/dx = 2(-cosθsinθ - cos2θ + sin2θ)
dy/dx = 2(- cos\(^2\)θ + sin\(^2\)θ)
= -2(cos\(^2\)θ - sin\(^2\)θ)
= -2(1 - 2sin\(^2\)θ)
= -2cos2θ