Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

3,736.

In triangle XYZ, ∠XYZ = 15o, ∠XZY = 45o and lXYl = 7 cm. Find lYZl.

A.

14√2 cm

B.

\(7\left(\frac{\sqrt{6}}{2}\right)\)

C.

7√2 cm

D.

7 cm

Correct answer is B

No explanation has been provided for this answer.

3,737.

PQ and RS are two parallel lines. If the coordinates of P, Q, R, S are (1,q), (3,2), (3,4), (5,2q) respectively, find the value of q

A.

3

B.

4

C.

1

D.

2

Correct answer is D

Gradient PQ, P(1,q) and Q(3,2)
\(=\frac{(2-q)}{(3-1)} = \frac{(2-q)}{2}\)
Gradient of RS : R(3,4) and S(5,2q)
\(= \frac{(2q-4)}{(5-3)}= \frac{(2q-4)}{2} = \frac{2(q-2)}{2}\)
= q-2
Since PQ and RS are parallel,
their gradients are equal
\(∴ \frac{(2-q)}{2} = q-2\)
2-q = 2(q-2)
2-q = 2q-4
2+4 = 2q+q
6 = 3q
q = 2

3,738.

If tan θ = 5/4, find sin2θ - cos2θ.

A.

5/4

B.

41/9

C.

9/41

D.

1

Correct answer is C

No explanation has been provided for this answer.

3,739.

Convert 2232\(_4\) to base six

A.

4506

B.

2546

C.

5536

D.

5406

Correct answer is A

1st convert to base 10
2232\(_4\) = 2 x 4\(^3\) + 2 x 4\(^2\) + 3 x 4\(^1\) + 2 x 4\(^0\)
= 2 x 64 + 2 x 16 + 3 x 4 + 2 x 1
= 128 + 32 + 12 + 2
= 174 convert to base 6
6/174
6/29 R 0
6/4 R 5
6/0 R 4
= 450\(_6\)

3,740.

Simplify \((25)^{\frac{-1}{2}} \times (27)^{\frac{1}{3}} + (121)^{\frac{-1}{2}} \times (625)^{\frac{-1}{4}}\)

A.

34/55

B.

9/11

C.

14/5

D.

3/275

Correct answer is A

(25)\(^{\frac{-1}{2}}\) x (27)\(^{\frac{1}{3}}\) + (121)\(^{\frac{-1}{2}}\) x (625)\(^{\frac{-1}{4}}\)
5\(^{2 \times \frac{-1}{2}}\) x 3\(^{3 \times \frac{1}{3}}\) + 11\(^{2 \times \frac{-1}{2}}\) x 5\(^{4 \times \frac{-1}{4}}\)
5\(^{-1}\) x 3\(^1\) x 11\(^{-1}\) x 5\(^{-1}\)
\(\frac{1}{5} \times \frac{3}{1} + \frac{1}{11} \times \frac{1}{5}\)
\(\frac{3}{5} + \frac{1}{55} = \frac{33+1}{55}\)
= \(\frac{34}{55}\)