-1 and 0
-1 and 1
1 and 3
0 and 1
Correct answer is D
\(9^{y} - 4 \times 3^{y} + 3 = 0\)
\(\equiv (3^{2})^{y} - 4 \times 3^{y} + 3 = 0\)
\((3^{y})^{2} - 4 \times 3^{y} + 3 = 0\)
Let \(3^{y}\) be r. Then,
\(r^{2} - 4r + 3 = 0\)
Solving the equation,
\(r^{2} - 3r - r + 3 = 0\)
\(r(r - 3) - 1(r - 3) = 0\)
\((r - 3)(r - 1) = 0\)
\(\therefore \text{r = 3 or 1}\)
Recall, \(3^{y} = r\)
\(3^{y} = 3 = 3^{1} \text{ or } 3^{y} = 1 = 3^{0}\)
\(\implies \text{y = 1 or 0}\)
Evaluate \(\int^{2} _{3}(x^2 - 2x)dx\) ...
Find the curved surface area of a cone with circular base diameter 10 cm and height 12 cm ...
Simplify \(\frac{4}{2x} - \frac{2x + x}{x}\)...
If f(x - 4) = x2 + 2x + 3, Find, f(2)...
If (2x + 3)3 = 125, find the value of x...
If \(\sin x = \frac{4}{5}\), find \(\frac{1 + \cot^2 x}{\csc^2 x - 1}\)....
In how many ways can 3 seats be occupied if 5 people are willing to sit?...