q \(\alpha p^2\)
q \(\alpha \frac{1}{p^2}\)
q \(\alpha \sqrt{p}\)
q \(\alpha \frac{1}{p}\)
Correct answer is D
p \(\alpha \frac{I}{Q}\); p \(\frac{k}{q}\) (where k is constant)
q = \(\frac{k}{p}\)
q \(\alpha \frac{1}{p}\)
\(\begin{array}{c|c} \text{No. of children} & 0 & 1 & 2 & 3 & 4 & 5 & 6 ...
\(\begin{array}{c|c} \text{Average hourly earnings(N)} & 5 - 9 & 10 - 14 & 15 - 19 &...
Evaluate \(\frac{2\log_{3} 9 \times \log_{3} 81^{-2}}{\log_{5} 625}\)...
Find the equation of the perpendicular at the point (4,3) to the line y + 2x = 5 ...
In the diagram, PR is a tangent to the circle at Q, QT//RS, ...
Solve for t in the equation \(\frac{3}{4}\)t + \(\frac{1}{3}\)(21 - t) = 11...