\(\frac{3n}{2p^2}\)
\(\frac{2n}{3p^2}\)
\(\frac{2n}{3p}\)
\(\frac{3n^2}{2p^2}\)
Correct answer is A
M = \(\frac{nk}{p^2}\)
k → \(\frac{mp^2}{n}\) = \(\frac{3x1^2}{2}\)
k = \(\frac{3}{2}\)
: m = \(\frac{3xn}{2p^2}\)
If \(\frac{1+\sqrt{2}}{1-\sqrt{2}}\) is expressed in the form of x+y√2 find the values of ...
Find \(\frac{dy}{dx}\), if y = \(\frac{2}{3}\) x\(^3\) - \(\frac{4}{x}\)...
Simplify 5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\)...
The angle between latitudes 30oS and 13oN is...
Evaluate \(\frac{2\sin 30 + 5\tan 60}{\sin 60}\), leaving your answer in surd form....
If y varies directly as \(\sqrt{n}\) and y = 4 when n = 4, find y when n = 1\(\frac{7}{9}\)...
\(\begin{array}{c|c} x & 1 & 4 & p \\ \hline y & 0.5 & 1 & 2.5\end{array}\)....
\(\begin{array}{c|c} Age(years) & 13 & 14 & 15 & 16 & 17 \\ \hline Frequency & 10 & 24 & 8 & 5...
S = {1, 2, 3, 4, 5, 6}, T = {2,4,5,7} and R = {1,4, 5}, and (S∩T) ∪ R ...