\(\frac{3n}{2p^2}\)
\(\frac{2n}{3p^2}\)
\(\frac{2n}{3p}\)
\(\frac{3n^2}{2p^2}\)
Correct answer is A
M = \(\frac{nk}{p^2}\)
k → \(\frac{mp^2}{n}\) = \(\frac{3x1^2}{2}\)
k = \(\frac{3}{2}\)
: m = \(\frac{3xn}{2p^2}\)
In the diagram above, |PQ| = |PR| = |RS| and ∠RPS = 32°. Find the value of ∠QPR ...
Simplify \(\frac{2x-1}{3}-\frac{x+3}{2}\)...
If cot \(\theta\) = \(\frac{x}{y}\), find cosec\(\theta\)...
Simplify \((\frac{3}{x} + \frac{15}{2y}) \div \frac{6}{xy}\)...