\(\frac{7}{6}\)
\(\frac{5}{6}\)
\(\frac{-5}{6}\)
\(\frac{-7}{6}\)
Correct answer is D
Expanding \((x+1)(x-2) = x^{2} - 2x + x - 2 = x^{2} - x - 2\)
\(\int_{-1}^{0} (x^{2} - x - 2) \mathrm{d}x = [\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2x]_{-1}^{0}\)
= \([\frac{0}{3} - \frac{0}{2} - 2\times0 - (\frac{-1^{3}}{3} - \frac{-1^{2}}{2} - 2\times-1)]\)
= \(0 + \frac{1}{3} + \frac{1}{2} - 2 = \frac{-7}{6}\)
Note: This can also be solved using integration by parts.
\(\int uv \mathrm{d}x = u\int v \mathrm{d}x - \int u'(\int v \mathrm{d}x)\mathrm{d}x\).
Marks 5 - 7 8 - 10 11 - 13 14 - 16 17 - 19 20 - 22 Frequency 4 7 26 41 1...
Given that \(\tan x = \frac{5}{12}\), and \(\tan y = \frac{3}{4}\), Find \(\tan (x + y)\)....
In what interval is the function f : x -> 2x - x\(^2\) increasing? ...
Simplify: \((1 - \sin \theta)(1 + \sin \theta)\)...
If \(log_{y}\frac{1}{8}\) = 3, find the value of y....
Find the variance of 11, 12, 13, 14 and 15. ...
If \((2x^{2} - x - 3)\) is a factor of \(f(x) = 2x^{3} - 5x^{2} - x + 6\), find the other factor...
Determine the coefficient of x\(^3\) in the binomial expansion of ( 1 + \(\frac{1}{2}\)x) ...