Calculate the standard deviation of 30, 29, 25, 28, 32 an...
Calculate the standard deviation of 30, 29, 25, 28, 32 and 24.
2.0
2.8
3.0
3.2
Correct answer is B
| \(x\) | \(x - \mu\) | \((x - \mu)^{2}\) |
| 24 | -4 | 16 |
| 25 | -3 | 9 |
| 28 | 0 | 0 |
| 29 | 1 | 1 |
| 30 | 2 | 4 |
| 32 | 4 | 16 |
| \(\sum\) = 168 | 46 |
\(\mu = \frac{24+25+28+29+30+32}{6} = \frac{168}{8} = 28\)
\(S.D = \sqrt{\frac{\sum{(x - \mu)^{2}}}{n}} = \sqrt{\frac{46}{6}}\)
= \(\sqrt{7.67} \approxeq 2.8\)
If \(\frac{6x + k}{2x^2 + 7x - 15}\) = \(\frac{4}{x + 5} - \frac{2}{2x - 3}\). Find the value ...
Find the standard deviation of the numbers 3,6,2,1,7 and 5. ...
Marks 5 - 7 8 - 10 11 - 13 14 - 16 17 - 19 20 - 22 Frequency 4 7 26 41 1...
Given n = 3, evaluate \(\frac{1}{(n-1)!} - \frac{1}{(n+1)!}\)...
Express \(\frac{3}{3 - √6}\) in the form \(x + m√y\)...
Which of the following is the semi- interquartile range of a distribution? ...