3 - 3 √6
3 + 3√6
3 + √6
3 - √6
Correct answer is C
\(\frac{3}{3 - √3}\)
Rationalize
\(= \frac{3}{3 - √6} \times \frac{3 + √6}{3 + √6}\)
\(=\frac{3(3 + √6)}{(3 - √6)(3 + √6)}\)
\(=\frac{3(3 + √6)}{9 - 6}=\frac{3(3 + √6)}{3}\)
∴ 3 + √6
If \(\sqrt{x} + \sqrt{x + 1} = \sqrt{2x + 1}\), find the possible values of x....
Express \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\) in the form \(p\sqrt{3} + q\sqrt{2}\)...
Simplify \(\frac{x^{3n + 1}}{x^{2n + \frac{5}{2}}(x^{2n - 3})^{\frac{1}{2}}}\)...
If (x + 1) is a factor of the polynomial \(x^{3} + px^{2} + x + 6\). Find the value of p....
Evaluate \(\int_{1}^{2} [\frac{x^{3} - 1}{x^{2}}] \mathrm {d} x\)...
Integrate \((x - \frac{1}{x})^{2}\) with respect to x....
The remainder when \(x^{3} - 2x + m\) is divided by \(x - 1\) is equal to the remainder when \...
Express \(\frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)}\) in partial fractions....