80
90
110
120
Correct answer is D
\(\frac{^{n}P_{5}}{^{n}C_{5}} = \frac{n!}{(n-5)!} ÷ \frac{n!}{(n-5)!5!}\)
= \(\frac{n!}{(n-5)!} \times \frac{(n-5)!5!}{n!} = 5! = 120\)
In how many ways can the letters of the word MEMBER be arranged? ...
Given that \(f(x) = \frac{x+1}{2}\), find \(f^{1}(-2)\)....
Find the variance of 1, 2, 0, -3, 5, -2, 4....
Resolve \(\frac{3x - 1}{(x - 2)^{2}}, x \neq 2\) into partial fractions....
Given that M = \(\begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}\) and N = ...
Differentiate \(\frac{5x^ 3+x^2}{x}\), x ≠ 0 with respect to x....