30°
45°
60°
90°
Correct answer is C
\(2\sin^{2}\theta = 1 + \cos \theta \implies 2(1 - \cos^{2}\theta) = 1 + \cos \theta\)
\(2 - 2\cos^{2}\theta = 1 + \cos \theta\)
\(2 - 2\cos^{2}\theta - 1 - \cos \theta = 0\)
\(2\cos^{2}\theta + \cos \theta - 1 = 0\)
\(2\cos^{2}\theta + 2\cos\theta - \cos \theta - 1 = 0 \implies 2\cos \theta(\cos \theta + 1) - 1(\cos \theta + 1) = 0\)
\((2\cos \theta - 1)(\cos \theta + 1) = 0 \implies \cos \theta = \frac{1}{2} \)
\(\theta = \cos^{-1} \frac{1}{2} = 60°\)
Given n = 3, evaluate \(\frac{1}{(n-1)!} - \frac{1}{(n+1)!}\)...
Given that \(\frac{1}{8^{2y - 3y}} = 2^{y + 2}\)....
Find the coefficient of \(x^{4}\) in the binomial expansion of \((1 - 2x)^{6}\)....
Marks 5 - 7 8 - 10 11 - 13 14 - 16 17 - 19 20 - 22 Frequency 4 7 26 41 1...
Find the axis of symmetry of the curve \(y = x^{2} - 4x - 12\)....
Given that \(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} 5...