\(\frac{1}{x + 1}\)
\(\frac{1}{(x + 1)^{2}}\)
\(\frac{1 - x}{x + 1}\)
\(\frac{1 - x}{(x + 1)^{2}}\)
Correct answer is B
\(y = \frac{x}{x + 1}\)
Using quotient rule because the function is of the form \(\frac{u(x)}{v(x)}\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{v\frac{\mathrm d u}{\mathrm d x} - u\frac{\mathrm d v}{\mathrm d x}}{v^{2}}\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{(x + 1) . 1 - x . 1}{(x + 1)^{2}}\)
= \(\frac{1}{(x + 1)^{2}}\)
The equation of a circle is \(3x^{2} + 3y^{2} + 24x - 12y = 15\). Find its radius....
Evaluate \(\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}...
A linear transformation T is defined by T: (x,y) → (3x - y, x + 4y). Find the image of (2, -1) ...
If \(\log_{3} x = \log_{9} 3\), find the value of x....
Given that \(x * y = \frac{x + y}{2}, x \circ y = \frac{x^{2}}{y}\) and \((3 * b) \circ&nb...
Given that \(\log_{2} y^{\frac{1}{2}} = \log_{5} 125\), find the value of y...
If \(\sqrt{x} + \sqrt{x + 1} = \sqrt{2x + 1}\), find the possible values of x....
Given that \(P = \begin{pmatrix} y - 2 & y - 1 \\ y - 4 & y + 2 \end{pmatrix}\) and |P| = -2...