25
15
\(3\sqrt{7}\)
\(\sqrt{10}\)
Correct answer is A
Change in momentum = m (v - u)
= \(5 \times (\begin{pmatrix} 4 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix})\)
= \(5 \times \begin{pmatrix} 3 \\ 4 \end{pmatrix}\)
= \(\begin{pmatrix} 15 \\ 20 \end{pmatrix}\)
\(|m(v - u)| = \sqrt{15^{2} + 20^{2}} = \sqrt{625} = 25\)
Given that \(R = (4, 180°)\) and \(S = (3, 300°)\), find the dot product...
Find the locus of points which is equidistant from P(4, 5) and Q(-6, -1). ...
Given that \(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\), solve for n...
If \(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = -2\), find the value of x....
If \(2\sin^{2}\theta = 1 + \cos \theta, 0° \leq \theta \leq 90°\), find \(\theta\)...
Given that \(f(x) = 2x^{3} - 3x^{2} - 11x + 6\) and \(f(3) = 0\), factorize f(x)...
If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m....