24
18
12
6
Correct answer is A
\(^{n}P_{4} = \frac{n!}{(n - 4)!}\)
\(^{n}C_{4} = \frac{n!}{(n - 4)! 4!}\)
\(\frac{^{n}P_{4}}{^{n}C_{4}} = \frac{n!}{(n - 4)!} ÷ \frac{n!}{(n - 4)! 4!}\)
= \(4! = 24\)
Find the radius of the circle \(x^{2} + y^{2} - 8x - 2y + 1 = 0\)....
Given that \(P = \begin{pmatrix} y - 2 & y - 1 \\ y - 4 & y + 2 \end{pmatrix}\) and |P| = -2...
Face 1 2 3 4 5 6 Frequency 12 18 y 30 2y 45 Given the table above as t...
Express 75° in radians, leaving your answer in terms of \(\pi\)....