WAEC Past Questions and Answers - Page 1209

6,041.

Find the angle between \((5i + 3j)\) and \((3i - 5j)\)

A.

180°

B.

90°

C.

45°

D.

Correct answer is B

\(a . b = |a||b|\cos \theta\)

\(\cos \theta = \frac{a . b}{|a||b|}\)

= \( \frac{(5i + 3j).(3i - 5j)}{(\sqrt{5^2 + 3^2})(\sqrt{3^{2} + (-5)^{2}})}\)

= \(\frac{0}{34} = 0\)

\(\theta = \cos^{-1} 0 = 90°\)

6,042.

Given that \(AB = \begin{pmatrix} 4 \\ 3 \end{pmatrix}\) and \(AC = \begin{pmatrix} 2 \\ -3 \end{pmatrix}\), find |BC|.

A.

\(4\sqrt{2}\)

B.

\(6\sqrt{2}\)

C.

\(2\sqrt{10}\)

D.

\(4\sqrt{10}\)

Correct answer is C

\(BC = BA + AC\)

Given, \(AB\), then \(BA = - AB\)

= \(AB = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \implies BA = \begin{pmatrix} -4 \\ -3 \end{pmatrix}\)

\(\therefore BC = \begin{pmatrix} -4 \\ -3 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \end{pmatrix}\)

= \(\begin{pmatrix} -2 \\ -6 \end{pmatrix}\)

\(|BC| = \sqrt{(-2)^{2} + (-6)^{2}} = \sqrt{40} \)

= \(2\sqrt{10}\)

6,043.

Integrate \((x - \frac{1}{x})^{2}\) with respect to x.

A.

\(\frac{1}{3}(x - \frac{1}{x})^{3} + c\)

B.

\(\frac{x^{3}}{3} - x\sqrt{\frac{1}{x^{3}}} + c\)

C.

\(\frac{x^{3}}{3} - 2x + \frac{1}{x^{3}} + c\)

D.

\(\frac{x^3}{3} - 2x - \frac{1}{x} + c\)

Correct answer is D

\((x - \frac{1}{x})^{2} = x^2 - 2 + \frac{1}{x^2}\)

\(\int (x^2 + \frac{1}{x^2} - 2) \mathrm {d} x\)

= \(\int (x^2 + x^{-2} - 2) \mathrm {d} x\)

= \(\frac{x^3}{3} - 2x - \frac{1}{x}\)

6,044.

If \(Px^{2} + (P+1)x + P = 0\) has equal roots, find the values of P.

A.

\(\text{-1 and }\frac{-1}{3}\)

B.

\(\text{1 and }\frac{-1}{3}\)

C.

\(\text{-1 and }\frac{1}{3}\)

D.

\(\text{1 and }\frac{1}{3}\)

Correct answer is B

For equal roots, \(b^{2} - 4ac = 0\)

From the equation, \(a = P, b = (P+1), c = P\)

\((P+1)^{2} - 4(P)(P) = P^{2} + 2P + 1 - 4P^{2} = 0\)

\(-3P^{2} + 2P + 1 = 0 \implies 3P^{2} - 2P - 1 = 0\)

\(3P^{2} - 3P + P - 1 = 0\)

\(3P(P - 1) + 1(P - 1) = 0\)

\(P = \text{1 or }\frac{-1}{3}\)

6,045.

The purchase of furniture, an asset to the company was debited to purchases account. This is an error of

A.

Omission

B.

Original entry

C.

Principle

D.

Commission

Correct answer is C

No explanation has been provided for this answer.