WAEC Further Mathematics Past Questions & Answers - Page 126

626.

Given n = 3, evaluate \(\frac{1}{(n-1)!} - \frac{1}{(n+1)!}\)

A.

\(12\)

B.

\(2\frac{1}{2}\)

C.

\(2\)

D.

\(\frac{11}{24}\)

Correct answer is D

n = 3, \(\frac{1}{(n-1)!} - \frac{1}{(n+1)!} = \frac{1}{(3-1)!} - \frac{1}{(3+1)!}\)

= \(\frac{1}{2} - \frac{1}{24} = \frac{12 -1}{24}\)

= \(\frac{11}{24}\)

627.

Simplify \(\frac{^{n}P_{5}}{^{n}C_{5}}\)

A.

80

B.

90

C.

110

D.

120

Correct answer is D

\(\frac{^{n}P_{5}}{^{n}C_{5}} = \frac{n!}{(n-5)!} ÷ \frac{n!}{(n-5)!5!}\)

= \(\frac{n!}{(n-5)!} \times \frac{(n-5)!5!}{n!} = 5! = 120\)

628.

If \(\log_{10}y + 3\log_{10}x \geq \log_{10}x\), express y in terms of x.

A.

\(y \geq \frac{1}{x}\)

B.

\(y \leq \frac{1}{x}\)

C.

\(y \leq \frac{1}{x^{2}}\)

D.

\(y \geq \frac{1}{x^{2}}\)

Correct answer is D

\(\log_{10}y + 3\log_{10}x \geq \log_{10}x\)

\(\implies \log_{10}y \geq \log_{10}x - 3 \log_{10}x \)

\(\log_{10}y \geq -2\log_{10}x = \log_{10}y \geq \log_{10}x^{-2}\)

\(\log_{10}y \geq \log_{10}(\frac{1}{x^{2}}) \implies y \geq \frac{1}{x^{2}}\)

629.

Solve for x in the equation \(5^{x} \times 5^{x + 1} = 25\)

A.

\(-2\)

B.

\(\frac{-1}{2}\)

C.

\(\frac{1}{2}\)

D.

\(2\)

Correct answer is C

\(5^{x} \times 5^{x+1} = 25\)

\(5^{x} \times 5^{x+1} = 5^{2}\)

\(5^{x+x+1} = 5^{2}\), equating powers,

\(2x + 1 = 2 \implies 2x = 1\)

\(\therefore x = \frac{1}{2}\)

630.

If (2t - 3s)(t - s) = 0, find \(\frac{t}{s}\)

A.

\(\frac{3}{2}\) or \(1\)

B.

\(\frac{3}{2}\) or \(-1\)

C.

\(\frac{-3}{2}\) or \(-1\)

D.

\(\frac{-3}{2}\) or \(1\)

Correct answer is A

\((2t - 3s)(t - s) = 0 \implies (2t - 3s) = \text{0 or} (t - s) = 0\)

\(2t - 3s = 0 \implies 2t = 3s \therefore \frac{t}{s} = \frac{3}{2}\)

\(t - s = 0 \implies t = s  \therefore  \frac{t}{s} = 1\)

\(\frac{t}{s} = \frac{3}{2} or 1\)