WAEC Further Mathematics Past Questions & Answers - Page 132

656.

Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y.

A.

-2

B.

0

C.

1

D.

2

Correct answer is B

To find the maximum value, we can use the second derivative test where, given \(f(x)\), the second derivative < 0, makes it a maximum value.

\(x(x + 1)^{2} = x(x^{2} + 2x + 1) = x^{3} + 2x^{2} + x\)

\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} + 4x + 1 = 0\)

Solving, we have \( x = \frac{-1}{3}\) or \(-1\).

\(\frac{\mathrm d^{2} y}{\mathrm d x^{2}} = 6x + 4\)

When \(x = \frac{-1}{3}, \frac{\mathrm d^{2} y}{\mathrm d x^{2}} = 2 > 0\)

When \(x = -1, \frac{\mathrm d^{2} y}{\mathrm d x^{2}} = -2 < 0\)

At maximum value of x being -1, \(y = -1(-1 + 1)^{2} = 0\)

657.

Find the equation to the circle \(x^{2} + y^{2} - 4x - 2y = 0\) at the point (1, 3).

A.

2y - x -5 = 0

B.

2y + x - 5 = 0

C.

2y + x + 5 = 0

D.

2y - x + 5 = 0

Correct answer is A

We are given the equation \(x^{2} + y^{2} - 4x - 2y = 0\)

\(y = x^{2} + y^{2} - 4x - 2y \)

Using the method of implicit differentiation, 

\(\frac{\mathrm d y}{\mathrm d x} = 2x + 2y\frac{\mathrm d y}{\mathrm d x} - 4 - 2\frac{\mathrm d y}{\mathrm d x}\)

For the tangent, \(\frac{\mathrm d y}{\mathrm d x} = 0\),

\(\therefore 2x + 2y\frac{\mathrm d y}{\mathrm d x} - 4 - 2\frac{\mathrm d y}{\mathrm d x} = 0\)

\((2y - 2)\frac{\mathrm d y}{\mathrm d x} = 4 - 2x \implies \frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2x}{2y - 2}\)

At (1, 3), \(\frac{\mathrm d y}{\mathrm d x} = \frac{4 - 2(1)}{2(3) - 2} = \frac{2}{4} = \frac{1}{2}\)

Equation: \(\frac{y - 3}{x - 1} = \frac{1}{2} \implies 2y - 6 = x - 1\)

= \(2y - x - 6 + 1 = 2y - x - 5 = 0\)

658.

Express \(\frac{13}{4}\pi\) radians in degrees.

A.

495°

B.

225°

C.

585°

D.

135°

Correct answer is C

\(180° = \pi radian\)

\(\frac{13}{4}\pi = \frac{13}{4} \times 180° = 585°\)

659.

If the determinant of the matrix \(\begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13\), find the value of x.

A.

-2

B.

-1

C.

1

D.

2

Correct answer is B

\(\begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13\)

\(\begin{vmatrix} 2 & x \\ 3 & 5 \end{vmatrix} = (2 \times 5) - (3 \times x) = 13\)

\(10 - 3x = 13 \implies -3x = 3; x = -1\)

660.

In how many ways can the letters of the word 'ELECTIVE' be arranged?

A.

336

B.

1680

C.

6720

D.

20160

Correct answer is C

The word has 8 letters with one letter repeated 3 times, therefore we have:

\(\frac{8!}{3!} = 6720\) ways.