make x the subject of the relation \(y = \frac{ax^3 - b}{3z}\)
x = \(\sqrt[3] \frac{ax^3 - b}{3z}\)
x = \(\sqrt[3] \frac{3yz - b}{a}\)
x = \(\sqrt[3] \frac{3yz + b}{a}\)
x = \(\sqrt[3] \frac{3yzb}{a}\)
Correct answer is C
\(y = \frac{ax^3 - b}{3z}\)
cross multiply
\(ax^3 - b\) = 3yz
\(ax^3\) = 3yz + b
divide both sides by a
\(x^3 = \frac{3yz + b}{a}\)
take cube root of both sides
therefore, x = \(\sqrt[3] \frac{3yz + b}{a}\)
m:n = \(2\frac{1}{3} : 1\frac{1}{5}\) and n : q = \(1\frac{1}{2} : 1\frac{1}{3}\), find q : m.
35 : 18
16 : 35
18 : 35
35 : 16
Correct answer is B
m:n = \(2\frac{1}{3} : 1\frac{1}{5}\) = m : n = \(\frac{7}{3} : \frac{6}{5}\)
\(\frac{7}{3} : \frac{6}{5}\) = \(\frac{7}{3} \div \frac{6}{5}\)
\(\frac{m}{n}\) = \(\frac{7}{3} \times \frac{5}{6}\)
\(\frac{m}{n}\) = \(\frac{35}{18}\) = m = \(\frac{35n}{18}\)
n : q = \(1\frac{1}{2} : 1\frac{1}{3}\) = \(\frac{3}{2} : \frac{4}{3}\)
\(\frac{n}{q}\) = \(\frac{3}{2} \times\frac{3}{4}\)
\(\frac{n}{q}\) = \(\frac{9}{8}\) = q = \(\frac{8n}{9}\)
q : m = \(\frac{8n}{9}\) : \(\frac{35n}{18}\)
\(\frac{q}{m}\) = \(\frac{8n}{9} \div \frac{35n}{18}\)
\(\frac{q}{m}\) = \(\frac{8n}{9}\times\frac{18}{35n}\)
=\(\frac{q}{m} = \frac{16}{35}\) = q : m = 16 : 35
The radius of a sphere is 3 cm. Find, in terms of π, its volume.
\(30\pi cm^3\)
\(108\pi cm^3\)
\(27\pi cm^3\)
\(36\pi cm^3\)
Correct answer is D
Given that radius = 3cm.
volume of sphere = \(\frac{4}{3}\times\pi\times r^3\)
= \(\frac{4}{3}\times\pi\times 3^3\)
= \(\frac{4}{3}\times\pi\times 27\)
= \(4\times\pi\times9\)
= \(36\pi cm^3\)
\(1,106.29cm^2\)
\(1,016.29cm^2\)
\(1,106.89cm^2\)
\(1,206.27cm^2\)
Correct answer is A
radius = 8cm , height = 14cm and \(\pi = \frac{22}{7}\)
total surface area of a solid cylinder =\( 2πrh+2πr^2\) = 2πr( h + r )
\( 2 \times \frac{22}{7} \times 8( 8 + 14)\)
\( 2 \times \frac{22}{7} \times 8 \times 22\)
\(\frac{7744}{7}\)
= \(1,106.29cm^2\)
6.29m
7.67m
7.18m
6.65m
Correct answer is A
%error=5%, measured height = 5.98m
let the actual height = y
error=x - 5.98 (since 'y' is more than 5.98)
%error = \(\frac{error}{actual height}\times 100%\)
5% = \(\frac{y - 5.98}{y}\times 100%\)
\(\frac{5}{100} = \frac{y - 5.98}{y}\)
5y = 100(y - 5.98)
5y = 100y - 598
5y - 100y = - 598
-95y = - 598
y = \(\frac{-598}{-95}\)
y = 6.29m( to 2 d.p).