WAEC Past Questions and Answers - Page 3730

18,646.

The probability that John and James pass an examination are 3/4 and 3/5 respectively, find the probability of both boys failing the examination.

A.

\(\frac{1}{10}\)

B.

\(\frac{3}{10}\)

C.

\(\frac{9}{20}\)

D.

\(\frac{11}{20}\)

Correct answer is A

Prob.(John pass)\(\frac{3}{4}\) prob.(John fail) \(=1-\frac{3}{4}=\frac{1}{4}\)
Prob.(James pass) \(\frac{3}{5}\) Prob.(James fail) \(=1-\frac{3}{5}=\frac{2}{5}\)
Prob(both boys fail)\(\frac{1}{4}\times \frac{2}{5}=\frac{1}{10}\)

18,647.

The lengths of the adjacent sides of a right - angled triangle are xcm, (x-1)cm. If the length of the hypotenuse is \(\sqrt{13}cm\), find the value of x

A.

2

B.

3

C.

4

D.

5

Correct answer is B

\(x^2+(x-1)^2 = (\sqrt{13})^2 \Rightarrow x^2 + x^2 - 2x + 1 = 13\\
2x^2 - 2x - 12 = 0\) dividing through by 2
\(x^2 - x- 6 = 0; (x-3)(x-2) = 0 \Rightarrow x = 3 or -2 \)

18,648.

Make f the subject of the relation \(v = u + ft\)

A.

\(\frac{v-u}{t}\)

B.

\(\frac{u-v}{t}\)

C.

\(t(v+u\)

D.

\(\frac{v}{u}-t\)

Correct answer is A

\(v=u+ft \Rightarrow v-u=ft\Rightarrow f=\frac{v-u}{t}\)

18,649.

Expand (2x-3y)(x-5y)

A.

\(2x^2 + 13xy - 15y^2\)

B.

\(2x^2 - 13xy - 15y^2\)

C.

\(2x^2 + 13xy + 15y^2\)

D.

\(2x^2 - 13xy + 15y^2\)

Correct answer is D

\((2x-3y)(x-5y)=2x^2 - 10xy - 3xy + 15y^2\\
=2x^2 - 13xy + 15y^2\)

18,650.

Solve the equation \(2^7 = 8^{5-x}\)

A.

\(\frac{5}{8}\)

B.

\(\frac{8}{3}\)

C.

\(\frac{3}{2}\)

D.

\(\frac{15}{4}\)

Correct answer is B

\(2^7 = 2^{3(5-x)}\Rightarrow 7 = 3^{5-x} \Rightarrow 7 15 - 3x\\
\Rightarrow -8 = -3x \Rightarrow x = \frac{8}{3}\)