WAEC Past Questions and Answers - Page 3791

18,951.

If \(\frac{3^{(1-n)}}{9^{-2n}}=\frac{1}{9}\) find n

A.

\(-\frac{3}{2}\)

B.

\(\frac{1}{3}\)

C.

-1

D.

-3

Correct answer is C

\(\frac{3^{(1-n)}}{9^{-2n}}=\frac{1}{9}\\
3^{1-n}\times 3^{-2(-2n)} = 3^{-2}\\
1-n-2(-2n)= -2\\
1-n+4n=-2\\
n=-1\)

18,952.

Given that x ≅ 0.0102 correct to 3 significant figures, which of the following cannot be the actual value of x?

A.

0.01014

B.

0.01021

C.

0.01015

D.

0.01016

Correct answer is A

option A CANNOT BE BECAUSE THE LAST NUMBER BEFORE 1 CAN ONLY BE ROUNDED DOWN TO ZERO.

18,953.

Evaluate \((111_{two})^2 - (101_{two})^2\)

A.

10two

B.

100two

C.

1100two

D.

11000two

Correct answer is D

\((111_{2})^2 - (101_{2})^2\)

Difference of two squares

\((111 - 101)(111 + 101)\)

= \((10)(1100)\)

= \(11000_{2}\)

18,954.

In the diagram, \(P\hat{Q}S = 65^o, R\hat{P}S = 40^o\hspace{1mm}and\hspace{1mm}Q\hat{S}R=20^o\hspace{1mm}, find   P\hat{S}Q\)

A.

85o

B.

60o

C.

55o

D.

45o

Correct answer is C

< QPS = < PRS = 65° (angles in the same segment)

< PSR + 40° + 65° = 180°

< PSR + 105° = 180°

< PSR = 75°

< PSR = < PSQ + < QSR

75° = < PSQ + 20° \(\implies\) < PSQ = 75° - 20° = 55°

18,955.

Find the values of x for which \( \frac{1}{2x^2 - 13x +15} \) is not defined,

A.

5 or \( \frac{3}{2} \)

B.

1 or \( \frac{15}{13} \)

C.

2 or 15

D.

13 or 15

Correct answer is A

The fraction is undefined when the denominator is equal to zero
\(2x^2 - 13x + 15 = 0\\
2x^2 - 3x - 10x + 15\\
x(2x-3)-5(2x-3) = 0\\
(2x-3)(x-5)=0\\
x = \frac{3}{2} or x = 5\)