WAEC Past Questions and Answers - Page 3794

18,966.

A pyramid of volume 120cm3 has a rectangular base which measures 5cm by 6cm. Calculate the height of the pyramid

A.

5cm

B.

9cm

C.

12cm

D.

15cm

Correct answer is C

\(V= \frac{1}{2}\hspace{1mm}base\hspace{1mm}area\hspace{1mm}\times\hspace{1mm}height\\
120=\frac{1}{3}\times 5 \times 6 \times h; h = \frac{120}{10}=12cm\)

18,967.

Evaluate \(\frac{log8}{log\left(\frac{1}{4}\right)}\)

A.

-2

B.

\(\frac{-3}{2}\)

C.

\(\frac{1}{2}\)

D.

4

Correct answer is B

\(\frac{log8}{log\frac{1}{4}}=\frac{log2^3}{log2^{-2}}=\frac{3log2}{-2log2}=-\frac{3}{2}\)

18,968.

Find the value of x which satisfies the equation
5(x-7)=7-2x

A.

x =2

B.

x=4

C.

x=6

D.

x = 14

Correct answer is C

5(x - 7) = 7 - 2x

5x - 35 = 7 - 2x

5x + 2x = 7 + 35

7x = 42

x = \(\frac{42}{7}\)

= 6

18,969.

Simplify \(\left(1\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^2\)

A.

\(2\frac{1}{3}\)

B.

\(1\frac{1}{3}\)

C.

1

D.

\(\frac{3}{7}\)

Correct answer is A

\(\left(1\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^2=\left(\frac{5}{3}\right)^2 - \left(\frac{2}{3}\right)^2\)
Difference of two squares
\(\left(\frac{5}{3}-\frac{2}{3}\right)\left(\frac{5}{3}+\frac{2}{3}\right)=\left(\frac{3}{3}\right)\left(\frac{7}{3}\right)\\
\frac{7}{3}=2\frac{1}{3}\)

18,970.

Three men, Bedu, Bakre and Kofi shared' N500 in the ratio 3:2: x respectively. If Bedu’s share is N150, find the value of x.

A.

1

B.

4

C.

5

D.

6

Correct answer is C

\(5+x\rightarrow 500\\
3 \rightarrow 150\\
∴ 3 \times 500 = 150 \times (5+x)\\
1500 = 750 + 150x\\
x=\frac{750}{150}=5\)