WAEC Further Mathematics Past Questions & Answers - Page 38

186.

If P = \(\begin {pmatrix} 2 & 3\\  -4 & 1 \end {pmatrix}\), Q = \(\begin{pmatrix} 6 \\ 8 \end {pmatrix}\) and PQ = k \(\begin {pmatrix} 45\\ -20 \end {pmatrix}\). Find the value of k.

A.

-\(\frac{5}{4}\)

B.

-\(\frac{4}{5}\)

C.

\(\frac{4}{5}\)

D.

\(\frac{5}{4}\)

Correct answer is C

PQ = \(\begin {pmatrix} 2 & 3\\ -4 & 1\end {pmatrix}\) = \(\begin {pmatrix} 6 \\ 8 \end {pmatrix}\) = \(\begin {pmatrix} 36 \\ - 16\end {pmatrix}\)

\(\begin {pmatrix} 36 \\ -16 \end {pmatrix} \) = k = \(\begin {pmatrix} 45 \\ -20 \end {pmatrix} \)

k = \(\frac{36}{45}\) 

= \(\frac{4}{5}\)

187.

Calculate the distance between points (-2, -5) and (-1, 3) 

A.

\(\sqrt{5}\) units

B.

\(\sqrt{17}\) units

C.

\(\sqrt{65}\) units

D.

\(\sqrt{73}\) units

Correct answer is C

distance = \(\sqrt{(3 - (-5)^2 + (-1 - (-2)^2)}\)

= \(\sqrt{8^2 + 1^2}\)

= \(\sqrt{65}\) units

188.

Find the value of x for which 6\(\sqrt{4x^2 + 1}\) = 13x, where x > 0

A.

\(\frac{6}{5}\)

B.

\(\frac{25}{24}\)

C.

\(\frac{24}{25}\)

D.

\(\frac{5}{6}\)

Correct answer is A

\(\sqrt{4x^2 + 1}\) = \(\frac{13x}{6}\)

4x\(^2\) + 1 = \(\frac{169x^2}{36}\)

4 + x\(^2\)  = \(\frac{169x^2}{36}\) 

cross multiply

169x\(^2\) - 144x\(^2\) = 36

25x\(^2\) = 36

x\(^2\) = \(\frac{36}{25}\)

: x = \(\pm\frac{6}{5}\)

189.

Find the sum of the first 20 terms of the sequence -7-3, 1, ......

A.

620

B.

660

C.

690

D.

1240

Correct answer is A

d = -3 - (-7) = 4

S\(_{20}\) = \(\frac{20}{2}\){2(-7) + (20 - 1) 4}

= 10(- 14 + 76)

= 620

190.

Given that \(\frac{1}{x^2 - 4} = \frac{p}{(x + 2)} + \frac{Q}{(x - 2})\)

x \(\neq \pm 2\)

Find the value of (P + Q)

A.

\(\frac{3}{2}\)

B.

1

C.

\(\frac{1}{2}\)

D.

0

Correct answer is D

\(\frac{1}{x^2 - 4} = \frac{P}{(x + 2)} + \frac{Q}{(x - 2)}\)

I = p(x - 2) + Q(x + 2)

Let x = 2

I = P(2 - 2) + Q(2+ 2)

I = -4Q 

Q = \(\frac{1}{4}\) 

Let x = -2

I = P(-2  - 2) + Q(-2 + 2)

I = -4p 

P = \(\frac{1}{-4}\) 

PQQ = - \(\frac{1}{4} + \frac{1}{4}\)

= 0