Processing math: 27%

WAEC Further Mathematics Past Questions & Answers - Page 8

36.

Given that sinx=45 and cosy=1213, where x is an obtuse angle and y is an acute angle, find the value of sin (x - y).

A.

6365

B.

4865

C.

5665

D.

1665

Correct answer is A

sinx=45 and cosy=1213

x is obtuse i.e sin x = + ve while cos x = + ve

cosx=35==>cosx=35(obtuse)

siny=513

sin(xy)=sinx cosycosx siny

sin(xy)=45×1213(35)×513

sin(xy)=4865(313)

37.

Evaluate \int^1_0 x(x^2-2)^2 dx

A.

\frac{6}{7}

B.

1\frac{1}{6}

C.

\frac{1}{7}

D.

3\frac{1}{6}

Correct answer is B

\int^1_0 x(x^2-2)^2 dx

(x^2-2)^2=x^4-2x^2-2x^2+4

=x^4-4x^2+4

x(x^2-2)^2=x(x^4-4x^2+4)

=x^5-4x^3+4x

\int^1_0 x(x^2-2)^2 dx = \int^1_0 x^5 - 4x^3 + 4x dx

=(\frac{x^6}{6} - x^4+2x^2)^1_0

= (\frac{(1)^6}{6} - (1)^4 +2(1)^2)-(\frac{(0)^6}{6} - (0)^4+2(0)^2)

=\frac{7}{6} - 0 =\frac{7}{6}

\therefore 1\frac{1}{6}

38.

The distance S metres moved by a body in t seconds is given by S = 5t^3 - \frac{19}{2} t^2 + 6t - 4. Calculate the acceleration of the body after 2 seconds

A.

19 ms ^{-2}

B.

21 ms ^{-2}

C.

41 ms ^{-2}

D.

31 ms ^{-2}

Correct answer is C

S = 5t^3 - \frac{19}{2} t^2 + 6t - 4

v(t)=\frac{dS}{dt}=15t^2-19t+6

a(t)=\frac{dv}{dt}=30t-19

∴a(2)=30(2)-19=60-19=41 ms ^{-2}

39.

Find the equation of the normal to the curve y = 3x^2 + 2 at point (1, 5)

A.

6y - x - 29 = 0

B.

6y + x - 31 = 0

C.

y - 6x - 1 = 0

D.

y - 6x + 1 = 0

Correct answer is B

y = 3x^2 + 2

y^1 = \frac{dy}{dx} = 6x

Evaluating this derivative at x = 1 (since the point of interest is (1, 5)) gives us the slope of the tangent line at that point:
^mtangent = y^1(1) = 6 (1) = 6
Slope of the Normal Line ^mnorma l= - \frac{1}{^mtangent}

^mnormal = - \frac{1}{6}

y−y_1​= ^mnormal⋅(x−x_1)

=y-5=-\frac{1}{6}(x-1)

=y-5=-\frac{1}{6}x+\frac{1}{6}

=y=-\frac{1}{6}x+\frac{1}{6}+5

Multiply through by 6

=6y=-x+1+30

∴6y+ x - 31=0

40.

Calculate, correct to one decimal place, the angle between 5 i + 12 j and -2 i + 3 j

A.

56.3º

B.

76.3º

C.

66.4º

D.

54.8º

Correct answer is A

Using the dot product:

a.b = |a||b|cos θ

a.b = 5(-2) + 12(3) = -10 + 36 = 26

|a| = √(52 + 122) = √(25 + 144)

|a| = √169 = 13

|b| = √((-2)^2 + 3^2) = √(4 + 9)

|b| = √13

= 26 = 13√13 x cos θ

= \frac{26}{13\sqrt13} = cos θ

=\frac{2}{\sqrt13} = cos θ

= θ = cos^{-1} (\frac{2}{\sqrt13})

∴ θ = 56.3º