6365
4865
5665
1665
Correct answer is A
sinx=45 and cosy=1213
x is obtuse i.e sin x = + ve while cos x = + ve
cosx=35==>cosx=−35(obtuse)
siny=513
sin(x−y)=sinx cosy−cosx siny
sin(x−y)=45×1213−(−35)×513
sin(x−y)=4865−(−313)
∴
Evaluate \int^1_0 x(x^2-2)^2 dx
\frac{6}{7}
1\frac{1}{6}
\frac{1}{7}
3\frac{1}{6}
Correct answer is B
\int^1_0 x(x^2-2)^2 dx
(x^2-2)^2=x^4-2x^2-2x^2+4
=x^4-4x^2+4
x(x^2-2)^2=x(x^4-4x^2+4)
=x^5-4x^3+4x
\int^1_0 x(x^2-2)^2 dx = \int^1_0 x^5 - 4x^3 + 4x dx
=(\frac{x^6}{6} - x^4+2x^2)^1_0
= (\frac{(1)^6}{6} - (1)^4 +2(1)^2)-(\frac{(0)^6}{6} - (0)^4+2(0)^2)
=\frac{7}{6} - 0 =\frac{7}{6}
\therefore 1\frac{1}{6}
19 ms ^{-2}
21 ms ^{-2}
41 ms ^{-2}
31 ms ^{-2}
Correct answer is C
S = 5t^3 - \frac{19}{2} t^2 + 6t - 4
v(t)=\frac{dS}{dt}=15t^2-19t+6
a(t)=\frac{dv}{dt}=30t-19
∴a(2)=30(2)-19=60-19=41 ms ^{-2}
Find the equation of the normal to the curve y = 3x^2 + 2 at point (1, 5)
6y - x - 29 = 0
6y + x - 31 = 0
y - 6x - 1 = 0
y - 6x + 1 = 0
Correct answer is B
y = 3x^2 + 2
y^1 = \frac{dy}{dx} = 6x
Evaluating this derivative at x = 1 (since the point of interest is (1, 5)) gives us the slope of the tangent line at that point:
^mtangent = y^1(1) = 6 (1) = 6
Slope of the Normal Line ^mnorma l= - \frac{1}{^mtangent}
^mnormal = - \frac{1}{6}
y−y_1= ^mnormal⋅(x−x_1)
=y-5=-\frac{1}{6}(x-1)
=y-5=-\frac{1}{6}x+\frac{1}{6}
=y=-\frac{1}{6}x+\frac{1}{6}+5
Multiply through by 6
=6y=-x+1+30
∴6y+ x - 31=0
Calculate, correct to one decimal place, the angle between 5 i + 12 j and -2 i + 3 j
56.3º
76.3º
66.4º
54.8º
Correct answer is A
Using the dot product:
a.b = |a||b|cos θ
a.b = 5(-2) + 12(3) = -10 + 36 = 26
|a| = √(52 + 122) = √(25 + 144)
|a| = √169 = 13
|b| = √((-2)^2 + 3^2) = √(4 + 9)
|b| = √13
= 26 = 13√13 x cos θ
= \frac{26}{13\sqrt13} = cos θ
=\frac{2}{\sqrt13} = cos θ
= θ = cos^{-1} (\frac{2}{\sqrt13})
∴ θ = 56.3º