How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Find the area and perimeter of a square whose length of diagonals is 20√2 cm
800 cm2, 80 cm
400 cm, 80 cm2
80 cm, 800 cm2
400 cm2, 80 cm
Correct answer is D
Using Pythagoras theorem
⇒ (20√2)2=x2+x2
⇒ 800 = 2x2
⇒ 400 = x2
⇒ x = √400 = 20 cm
∴ Area of a square = x2=202=400cm2
∴ Perimeter of a square = 4x = 4 x 20 = 80 cm
Find the volume of the composite solid above.
2048 cm3
2568 cm3
2672 cm3
1320 cm3
Correct answer is B
Volume of the composite solid = Volume of A + Volume of B
Volume of a cuboid = length x breadth x height
Volume of A = 6 x 26 x 8 = 1248 cm3
Volume of B = 6 x 10 x 22 = 1320 cm3
∴ Volume of the composite solid = 1248 + 1320 = 2568 cm3
Two dice are tossed. What is the probability that the total score is a prime number.
512
59
16
13
Correct answer is A
Total possible outcome = 6 x 6 = 36
Required outcome = 15
∴ Pr(E) = 1536=512
11
13
12
14
Correct answer is B
An exterior angle of a n-sided regular polygon = 360n
For (n - 1) sided regular polygon = 360n−1
For (n + 2) sided regular polygon = 360n+1
⇒ 360n−1−360n+2 = 6 9Given)
⇒ 360(n+2)−360(n−1)(n−1)(n+2)
⇒ 360n+720−360n+360(n−1)(n+2)
⇒ 1080(n−1)(n+2)=61
⇒ 1080 = 6 (n - 1)(n + 2)
⇒ 180 = (n - 1)(n + 2)
⇒ 180 = n2+ 2n - n - 2
⇒ 180 = n2 + n - 2
⇒ n2b+ n - 2 - 180 = 0
⇒ n2 + n - 182 = 0
⇒ n2 + 14n - 13n - 182 = 0
⇒ n (n + 14) - 13 (n + 14) = 0
⇒ (n - 13) (n + 14) = 0
⇒ n - 13 = 0 or n + 14 = 0
⇒ n = 13 or n = -14
∴ n = 13 (We can't have a negative number of side)