Processing math: 28%
Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

66.

The line 3y+6x = 48 passes through the points A(-2, k) and B(4, 8). Find the value of k.

A.

16

B.

20

C.

8

D.

-2

Correct answer is B

The line: 3y+6x = 48

Divide through by 3

⇒ y + 2x = 16

⇒ y = -2x + 16

∴ The gradient of the line = -2

The points: A(-2, k) and B (4, 8)

m =y2y1x2x1=8k4(2)

⇒ m =\frac[8 - k}{4 + 2} = {8 - k}{6}

Since the line passes through the points

∴ -2 = 8k6

\frac{-2}[1} = \frac{8 - k]{6}

⇒ 8 - k = -12

⇒ k = 8 + 12

∴ k = 20

67.

Find the value of the angle marked x in the diagram above

A.

600

B.

450

C.

900

D.

300

Correct answer is A

PR2=PQ2+RQ22(PQ)(RQ)cosQ

cosQ=PQ2+RQ2PR22(PQ)(RQ)

cosQ=82+52722×8×5

cosQ=64+254980

cosQ=4080=0.5

Q=cos1(0.5)=600

68.

The second term of a geometric series is ^{-2}/_3 and its sum to infinity is ^3/_2. Find its common ratio.

A.

^{-1}/_3

B.

2

C.

^{4}/_3

D.

^{2}/_9

Correct answer is A

T_2 = \frac{-2}{3};S_\infty \frac {3}{2}

T_n = ar^n - 1

T_2 = ar = \frac{-2}{3}---eqn.(i)

S_\infty = \frac{a}{1 - r} = \frac{3}{2}---eqn.(ii)

= 2a = 3(1 - r)

= 2a = 3 - 3r

∴ a = \frac{3 - 3r}{2}

Substitute \frac{3 - 3r}{2} for a in eqn.(i)

\frac{3 - 3r}{2} \times r = \frac{-2}{3}

= \frac{3r - 3r^2}{2} = \frac{-2}{3}

= 3(3r - 3r^2) = -4

= 9r - 9r^2 = -4

= 9r^2 - 9r - 4 = 0

= 9r^2 - 12r + 3r - 4 = 0

= 3r(3r - 4) + 1(3r - 4) = 0

= (3r - 4)(3r + 1) = 0

∴ r = \frac{4}{3} or - \frac{1}{3}

For a geometric series to go to infinity, the absolute value of its common ratio must be less than 1 i.e. |r| < 1.

∴ r = -^1/_3 (since |-^1/_3| < 1)

69.

A rectangle has one side that is 6 cm shorter than the other. The area of the rectangle will increase by 68 cm^2 if we add 2 cm to each side of the rectangle. Find the length of the shorter side

A.

15 cm

B.

19 cm

C.

13 cm

D.

21 cm

Correct answer is C

Let the length of the longer side = x cm

∴ The length of the shorter side = (x - 6) cm

If we increase each side's length by 2 cm, it becomes

(x + 2) cm and (x - 4) cm respectively

Area of a rectangle = L x B

A_1 = x(x - 6) = x^2 - 6x

A_2 = (x + 2)(x - 4) = x^2 - 4x + 2x - 8 = x^2 - 2x - 8

A_1 + 68 = A_2 (Given)

x^2 - 6x + 68 = x^2 - 2x - 8

x^2 - x^2 - 6x + 2x = -8 - 68

⇒ -4x = -76

x = \frac{-76}{-4} = 19cm

∴ The length of the shorter side = x - 6 = 19 - 6 = 13 cm

70.

Evaluate \frac{5}{8} - \frac{3}{4} ÷ \frac{5}{12} \times \frac{1}{4}

A.

- \frac{3}{40}

B.

\frac{3}{40}

C.

\frac{7}{40}

D.

-\frac{263}{40}

Correct answer is C

\frac{5}{8} - \frac{3}{4} ÷ \frac{5}{12} x \frac{1}{4}

⇒ \frac{5}{8} - (\frac{3}{4} ÷ \frac{5}{12}) \times \frac{1}{4}

⇒ \frac{5}{8} - (\frac{3}{4} \times \frac{12}{5}) \times \frac{1}{4}

\frac{5}{8} - (\frac{9}{5} \times \frac{1}{4})

\frac{5}{8} - \frac{9}{20}

\frac{7}{40}