How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
The line 3y+6x = 48 passes through the points A(-2, k) and B(4, 8). Find the value of k.
16
20
8
-2
Correct answer is B
The line: 3y+6x = 48
Divide through by 3
⇒ y + 2x = 16
⇒ y = -2x + 16
∴ The gradient of the line = -2
The points: A(-2, k) and B (4, 8)
m =y2−y1x2−x1=8−k4−(−2)
⇒ m =\frac[8 - k}{4 + 2} = {8 - k}{6}
Since the line passes through the points
∴ -2 = 8−k6
⇒ \frac{-2}[1} = \frac{8 - k]{6}
⇒ 8 - k = -12
⇒ k = 8 + 12
∴ k = 20
Find the value of the angle marked x in the diagram above
600
450
900
300
Correct answer is A
PR2=PQ2+RQ2−2(PQ)(RQ)cosQ
⟹cosQ=PQ2+RQ2−PR22(PQ)(RQ)
⟹cosQ=82+52−722×8×5
⟹cosQ=64+25−4980
⟹cosQ=4080=0.5
⟹Q=cos−1(0.5)=600
∴
^{-1}/_3
2
^{4}/_3
^{2}/_9
Correct answer is A
T_2 = \frac{-2}{3};S_\infty \frac {3}{2}
T_n = ar^n - 1
∴ T_2 = ar = \frac{-2}{3}---eqn.(i)
S_\infty = \frac{a}{1 - r} = \frac{3}{2}---eqn.(ii)
= 2a = 3(1 - r)
= 2a = 3 - 3r
∴ a = \frac{3 - 3r}{2}
Substitute \frac{3 - 3r}{2} for a in eqn.(i)
= \frac{3 - 3r}{2} \times r = \frac{-2}{3}
= \frac{3r - 3r^2}{2} = \frac{-2}{3}
= 3(3r - 3r^2) = -4
= 9r - 9r^2 = -4
= 9r^2 - 9r - 4 = 0
= 9r^2 - 12r + 3r - 4 = 0
= 3r(3r - 4) + 1(3r - 4) = 0
= (3r - 4)(3r + 1) = 0
∴ r = \frac{4}{3} or - \frac{1}{3}
For a geometric series to go to infinity, the absolute value of its common ratio must be less than 1 i.e. |r| < 1.
∴ r = -^1/_3 (since |-^1/_3| < 1)
15 cm
19 cm
13 cm
21 cm
Correct answer is C
Let the length of the longer side = x cm
∴ The length of the shorter side = (x - 6) cm
If we increase each side's length by 2 cm, it becomes
(x + 2) cm and (x - 4) cm respectively
Area of a rectangle = L x B
A_1 = x(x - 6) = x^2 - 6x
A_2 = (x + 2)(x - 4) = x^2 - 4x + 2x - 8 = x^2 - 2x - 8
A_1 + 68 = A_2 (Given)
⇒ x^2 - 6x + 68 = x^2 - 2x - 8
⇒ x^2 - x^2 - 6x + 2x = -8 - 68
⇒ -4x = -76
⇒ x = \frac{-76}{-4} = 19cm
∴ The length of the shorter side = x - 6 = 19 - 6 = 13 cm
Evaluate \frac{5}{8} - \frac{3}{4} ÷ \frac{5}{12} \times \frac{1}{4}
- \frac{3}{40}
\frac{3}{40}
\frac{7}{40}
-\frac{263}{40}
Correct answer is C
\frac{5}{8} - \frac{3}{4} ÷ \frac{5}{12} x \frac{1}{4}
⇒ \frac{5}{8} - (\frac{3}{4} ÷ \frac{5}{12}) \times \frac{1}{4}
⇒ \frac{5}{8} - (\frac{3}{4} \times \frac{12}{5}) \times \frac{1}{4}
⇒ \frac{5}{8} - (\frac{9}{5} \times \frac{1}{4})
⇒ \frac{5}{8} - \frac{9}{20}
∴ \frac{7}{40}