How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Multiply x2 + x + 1 by x2 - x + 1
x4 - x + x2
x4 - x2 + x2
x4 + x2 + 1
x4 + x2
Correct answer is C
(x2 + x + 1)( x2 - x + 1)
= x2(x2 + x + 1) - x(x2 + x + 1) + (x3 + x + 1)
= x4 - x3 + x2 + x3 - x2 - x + 1
= x4 + x2 + 1
If b = a + cp and r = ab + \(\frac{1}{2}\)cp2, express b2 in terms of a, c, r.
b2 = aV + 2cr
b2 = ar + 2c2r
b2 = a2 = \(\frac{1}{2}\) cr2
b2 = \(\frac{1}{2}\)ar2 + c
b2 = 2cr - a2
Correct answer is E
b = a + cp....(i)
r = ab + \(\frac{1}{2}\)cp2.....(ii)
expressing b2 in terms of a, c, r, we shall first eliminate p which should not appear in our answer from eqn, (i)
b - a = cp = \(\frac{b - a}{c}\)
sub. for p in eqn.(ii)
r = ab + \(\frac{1}{2}\)c\(\frac{(b - a)^2}{\frac{ab + b^2 - 2ab + a^2}{2c}}\)
2cr = 2ab + b2 - 2ab + a2
b2 = 2cr - a2
Simplify T = \(\frac{4R_2}{R_1^{-1} + R_2^{-1} + 4R_3^{-1}}\)
\(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)
\(\frac{R_1 R_2 R_3}{R_2R_3 + R_1R_2 + 4R_1 R_2}\)
\(\frac{16R_1 R_2 R_3}{R_2R_3 + R_1R_2 + R_1 R_2}\)
\(\frac{4R_1 R_2 R_3}{4R_2R_3 + R_1R_2 + 4R_1 R_2}\)
Correct answer is A
T = \(\frac{4R_2}{R_1^{-1} + R_2^{-1} + 4R_3^{-1}}\) = \(\frac{4R_2}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{4}{R_3}}\)
= \(\frac{4R_2}{\frac{R_2R_3 + R_1R_3 + 4R_1R_2}{R_1R_2R_3}}\)
= \(\frac{4R_2 \times R_1 R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)
= \(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1R_2}\)
T = \(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)
12
27
9
4
36
Correct answer is C
1st term a = 3, 5th term = 9, sum of n = 81
nth term = a + (n - 1)d, 5th term a + (5 - 1)d = 9
3 + 4d = 9
4d = 9 - 3
d = \(\frac{6}{4}\)
= \(\frac{3}{2}\)
= 6
Sn = \(\frac{n}{2}\)(6 + \(\frac{3}{4}\)n - \(\frac{3}{2}\))
81 = \(\frac{12n + 3n^2}{4}\) - 3n
= \(\frac{3n^2 + 9n}{4}\)
3n2 + 9n = 324
3n2 + 9n - 324 = 0
By almighty formula positive no. n = 9
= 3
Show that \(\frac{\sin 2x}{1 + \cos x}\) + \(\frac{sin2 x}{1 - cos x}\) is
sin x
cos2x
2
3
Correct answer is C
\(\frac{\sin^{2} x}{1 + \cos x} + \frac{\sin^{2} x}{1 - \cos x}\)
\(\frac{\sin^{2} x (1 - \cos x) + \sin^{2} x (1 + \cos x)}{1 - \cos^{2} x}\)
= \(\frac{\sin^{2} x - \cos x \sin^{2} x + \sin^{2} x + \sin^{2} x \cos x}{\sin^{2} x}\)
(Note: \(\sin^{2} x + \cos^{2} x = 1\)).
= \(\frac{2 \sin^{2} x}{\sin^{2} x}\)
= 2.