How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Solve \(\frac{1}{x + 1}\) - \(\frac{1}{x + 3}\) = \(\frac{1}{4}\)
x = -1 or 3
x = 1 or 3
x = 1 or -5
x = -1 or 5
x = -1 or -3
Correct answer is C
\(\frac{1}{x + 1}\) - \(\frac{1}{x + 3}\) = \(\frac{1}{4}\)
\(\frac{x + 3 - x - 1}{(x + 1)(x + 3)}\) = \(\frac{1}{4}\)
\(\frac{2}{x^2 + 4x + 3}\) = \(\frac{1}{4}\)
= x2 + 4x + 3 = 8
x2 + 4x - 5 = 0
= (x - 1)(x + 5) = 0
x = 1 or -5
Simplify \(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) - \(\frac{3 - 2}{\sqrt{3} + \sqrt{2}}\)
2\(\sqrt{2} - \sqrt{3}\)
3(\(\sqrt{6}\) - 1)
\(\sqrt{6}\) - 3
-\(\frac{1}{2}\)
\(\frac{-\sqrt{3}}{\sqrt{2} - \sqrt{2}}\)
Correct answer is B
\(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) - \(\frac{3 - 2}{\sqrt{3} + \sqrt{2}}\)
\(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) = \(\frac{\sqrt{2}}{\sqrt{3}}\) - \(\frac{x}{\sqrt{2}}\)
\(\frac{\sqrt{3} + \sqrt{2}}{3 + \sqrt{2}}\) = \(\sqrt{6}\) + 2
\(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\) = \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\) x \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)
= 5 - 2\(\sqrt{6}\)
\(\sqrt{6}\) + 2 - (5 - 2 \(\sqrt{6}\)) = \(\sqrt{6}\) + 2 - 5 + 2\(\sqrt{6}\)
= 3\(\sqrt{6}\) - 3
= 3(\(\sqrt{6}\) - 1)
In one and a half hours, the minute hand of a clock rotates through an angle of
90o
180o
640o
450o
540o
Correct answer is E
1 hr = 60 mins, 60 mins = 360°
30 mins = \(\frac{360^o}{1}\) × \(\frac{30}{60}\)
= 180°
90 mins = 360° + 180°
= 540°
0.00012m
0.0000012m
0.000012m
0.00000012m
0.000000012m
Correct answer is C
1 UM = 10-6mm = 10-9m
1.2 x 104 x 10-9m = 1.2 x 10-5m (0.000012)
7cm
12cm
8cm
36cm
69cm
Correct answer is A
In \(\Delta DAC, \stackrel\frown{DAC} = \theta\)
\(\sin \theta = \frac{5}{13}\)
\(\theta = 22.6°\)
\(< DOC = 22.6° \times 2 = 45.2°\)
\(\sin 45.2 = \frac{5}{r} \implies r = \frac{5}{\sin 45.2}\)
\(r = 7.046cm\)
= \(7\frac{1}{24} cm\)