r > \(\frac{abc}{bc + ac + ab}\)
r < abc
r > \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\)
\(\frac{1}{abc}\)
Correct answer is A
\(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1 = \(\frac{bcr + acr + abr}{abc}\) > 1
r(bc + ac + ba > abc) = r > \(\frac{abc}{bc + ac + ab}\)
An arc of a circle of radius 14cm subtends angle 300° at the centre. Find the perimeter of the s...
Evaluate \(\int^{2} _{3}(x^2 - 2x)dx\) ...
Factorize completely X2+2XY+Y2+3X+3Y-18 ...
In the diagram, EF//QR, PE = 2cm, EQ = 4cm and FR = 6cm. Find x ...
If log 5.957 = 0.7750, find log \(3 \sqrt{0.0005957}\)...
No. of days 1 2 3 4 5 6 No. of students 20 x 50 40 2x 60 The distribution above shows the n...