Four fair coins are tossed once. Calculate the probabilit...
Four fair coins are tossed once. Calculate the probability of having equal heads and tails.
\(\frac{1}{4}\)
\(\frac{3}{8}\)
\(\frac{1}{2}\)
\(\frac{15}{16}\)
Correct answer is B
Let \(p(head) = p = \frac{1}{2}\) and \(p(tail) = q = \frac{1}{2}\)
\((p + q)^{4} = p^{4} + 4p^{3}q + 6p^{2}q^{2} + 4pq^{3} + q^{4}\)
The probability of equal heads and tails = \(6p^{2}q^{2} = 6(\frac{1}{2}^{2})(\frac{1}{2}^{2})\)
= \(\frac{6}{16} = \frac{3}{8}\).
Find the third term in the expansion of \((a - b)^{6}\) in ascending powers of b....
For what values of x is \(\frac{x^{2} - 9x + 18}{x^{2} + 2x - 35}\) undefined?...
If \(\frac{^{n}C_{3}}{^{n}P_{2}} = 1\), find the value of n....
Simplify: \((1 - \sin \theta)(1 + \sin \theta)\)...
Given that \(^{n}P_{r} = 90\) and \(^{n}C_{r} = 15\), find the value of r....
If \(\begin{pmatrix} 3 & 2 \\ 7 & x \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \be...