\(8\pi cm^{2}s^{-1}\)
\(16\pi cm^{2}s^{-1}\)
\(24\pi cm^{2}s^{-1}\)
\(48\pi cm^{2}s^{-1}\)
Correct answer is D
Surface area of sphere, \( A = 4\pi r^{2}\)
\(\frac{\mathrm d A}{\mathrm d r} = 8\pi r\)
The rate of change of radius with time \(\frac{\mathrm d r}{\mathrm d t} = 3cm s^{-1}\)
\(\frac{\mathrm d A}{\mathrm d t} = (\frac{\mathrm d A}{\mathrm d r})(\frac{\mathrm d r}{\mathrm d t})\)
= \(8\pi \times 2cm \times 3cm s^{-1} = 48\pi cm^{2}s^{-1}\)
Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x....
Find the coefficient of \(x^{3}\) in the binomial expansion of \((x - \frac{3}{x^{2}})^{9}\)....
A straight line 2x+3y=6, passes through the point (-1,2). Find the equation of the line. ...
Find an expression for y given that \(\frac{\mathrm d y}{\mathrm d x} = x^{2}\sqrt{x}\)...
Given that \(^{n}P_{r} = 90\) and \(^{n}C_{r} = 15\), find the value of r....
Evaluate \(\log_{10}(\frac{1}{3} + \frac{1}{4}) + 2\log_{10} 2 + \log_{10} (\frac{3}{7})\)...
Find the radius of the circle \(2x^2 + 2y^2 - 4x + 5y + 1 = 0\)...
Simplify ( \(\frac{1}{2 - √3}\) + \(\frac{2}{2 + √3}\) )\(^{-1}\)...