\(8\pi cm^{2}s^{-1}\)
\(16\pi cm^{2}s^{-1}\)
\(24\pi cm^{2}s^{-1}\)
\(48\pi cm^{2}s^{-1}\)
Correct answer is D
Surface area of sphere, \( A = 4\pi r^{2}\)
\(\frac{\mathrm d A}{\mathrm d r} = 8\pi r\)
The rate of change of radius with time \(\frac{\mathrm d r}{\mathrm d t} = 3cm s^{-1}\)
\(\frac{\mathrm d A}{\mathrm d t} = (\frac{\mathrm d A}{\mathrm d r})(\frac{\mathrm d r}{\mathrm d t})\)
= \(8\pi \times 2cm \times 3cm s^{-1} = 48\pi cm^{2}s^{-1}\)
Find the radius of the circle \(2x^2 + 2y^2 - 4x + 5y + 1 = 0\)...
If \(2\sin^{2} \theta = 1 + \cos \theta, 0° \leq \theta \leq 90°\), find the value of \(\the...
For what range of values of x is x\(^2\) - 2x - 3 ≤ 0...
Solve \(3^{2x} - 3^{x+2} = 3^{x+1} - 27\)...
If \(2\log_{4} 2 = x + 1\), find the value of x....
Consider the statements: p : Musa is short q : Musa is brilliant Which of the following rep...
A straight line 2x+3y=6, passes through the point (-1,2). Find the equation of the line. ...