90720
1296
1120
672
Correct answer is A
\((x)^{n}(x^{-1})^{8 - n} = x^{0}\)
\(x^{n} . x^{-8 + n} = x^{0} \implies n - 8 + n = 0\)
\(2n - 8 = 0 \implies n = 4\)
Constant term = \(^{8}C_{4}(2^{4})(3^{4}) = 70 \times 16 \times 81\)
= \(90720\)
Find the locus of points which is equidistant from P(4, 5) and Q(-6, -1). ...
Given that \(\frac{1}{8^{2y - 3y}} = 2^{y + 2}\)....
\(Differentiate f (x) = \frac{1}{(1 - x^2)^5}\) with respect to \(x\)....
If \(\begin{pmatrix} p+q & 1\\ 0 & p-q \end {pmatrix}\) = \(\begin{pmatrix} 2 & 1 ...
If (x - 3) is a factor of \(2x^{2} - 2x + p\), find the value of constant p....
If \(\begin{vmatrix} 4 & x \\ 5 & 3 \end{vmatrix} = 32\), find the value of x....
If \(log_{10}(3x+1) + log_{10}4 = log_{10}(9x+2)\), find the value of x ...
If α and β are roots of x\(^2\) + mx - n = 0, where m and n are constants, form the ...